IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/k56v8.html
   My bibliography  Save this paper

Estimating the variance of covariate-adjusted estimators of average treatment effects in clinical trials with binary endpoints

Author

Listed:
  • Magirr, Dominic
  • Wang, Craig

    (Novartis)

  • Przybylski, Alexander
  • Baillie, Mark

Abstract

Covariate-adjusted estimators of average treatment effects in clinical trials are typically more efficient than unadjusted estimators. Recent guidance from the FDA is highly detailed regarding the appropriate use of covariate adjustment for point estimation. Less direction is provided, however, on how to estimate the variance of such estimators. In this paper, we demonstrate that a precise description of the estimand is necessary to avoid ambiguity when comparing variance estimators for average treatment effects involving binary endpoints. When considering the suitability of a proposed estimand, together with a corresponding variance estimator, it is important to consider that the patients enrolled in clinical trials are typically a convenience sample. Since there is no unique way to map this process into formal statistical assumptions, it follows that a range of estimands, and therefore a range of variance estimators, may be acceptable. We aim to highlight through simulation results how the properties of proposed variance estimators differ, as well as the underlying reasons.

Suggested Citation

  • Magirr, Dominic & Wang, Craig & Przybylski, Alexander & Baillie, Mark, 2024. "Estimating the variance of covariate-adjusted estimators of average treatment effects in clinical trials with binary endpoints," OSF Preprints k56v8, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:k56v8
    DOI: 10.31219/osf.io/k56v8
    as

    Download full text from publisher

    File URL: https://osf.io/download/6764359e34758ebc81c55664/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/k56v8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bingkai Wang & Ryoko Susukida & Ramin Mojtabai & Masoumeh Amin-Esmaeili & Michael Rosenblum, 2023. "Model-Robust Inference for Clinical Trials that Improve Precision by Stratified Randomization and Covariate Adjustment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1152-1163, April.
    2. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    3. Kevin Guo & Guillaume Basse, 2023. "The Generalized Oaxaca-Blinder Estimator," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 524-536, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sihui Zhao & Xinbo Wang & Lin Liu & Xin Zhang, 2024. "Covariate Adjustment in Randomized Experiments Motivated by Higher-Order Influence Functions," Papers 2411.08491, arXiv.org, revised Dec 2024.
    2. van de Walle, Dominique & Mu, Ren, 2007. "Fungibility and the flypaper effect of project aid: Micro-evidence for Vietnam," Journal of Development Economics, Elsevier, vol. 84(2), pages 667-685, November.
    3. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    4. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Turner, Alex J. & Fichera, Eleonora & Sutton, Matt, 2021. "The effects of in-utero exposure to influenza on mental health and mortality risk throughout the life-course," Economics & Human Biology, Elsevier, vol. 43(C).
    6. Roxana Elena Manea, 2021. "School Feeding Programmes, Education and Food Security in Rural Malawi," CIES Research Paper series 63-2020, Centre for International Environmental Studies, The Graduate Institute.
    7. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    8. José de Sousa & Guillaume Hollard, 2021. "From Micro to Macro Gender Differences: Evidence from Field Tournaments," Post-Print hal-03389151, HAL.
    9. repec:ags:jrapmc:122316 is not listed on IDEAS
    10. Gunther Bensch & Jörg Peters, 2013. "Alleviating Deforestation Pressures? Impacts of Improved Stove Dissemination on Charcoal Consumption in Urban Senegal," Land Economics, University of Wisconsin Press, vol. 89(4), pages 676-698.
    11. G. Miller & Yuriy Pylypchuk, 2014. "Marital Status, Spousal Characteristics, and the Use of Preventive Care," Journal of Family and Economic Issues, Springer, vol. 35(3), pages 323-338, September.
    12. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    13. Michael Lechner & Ruth Miquel & Conny Wunsch, 2011. "Long‐Run Effects Of Public Sector Sponsored Training In West Germany," Journal of the European Economic Association, European Economic Association, vol. 9(4), pages 742-784, August.
    14. Li, Linjie & Liu, Xiaming & Yuan, Dong & Yu, Miaojie, 2017. "Does outward FDI generate higher productivity for emerging economy MNEs? – Micro-level evidence from Chinese manufacturing firms," International Business Review, Elsevier, vol. 26(5), pages 839-854.
    15. Olivier Dagnelie & Philippe Lemay‐Boucher, 2012. "Rosca Participation in Benin: A Commitment Issue," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 235-252, April.
    16. Frölich, Markus & Lechner, Michael, 2010. "Exploiting Regional Treatment Intensity for the Evaluation of Labor Market Policies," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1014-1029.
    17. Ralf Becker & Maggy Fostier, 2015. "Evaluating non-compulsory educational interventions - the case of peer assisted study groups," Economics Discussion Paper Series 1509, Economics, The University of Manchester.
    18. Katie Meara & Francesco Pastore & Allan Webster, 2020. "The gender pay gap in the USA: a matching study," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(1), pages 271-305, January.
    19. Ronald Mincy & Jennifer Hill & Marilyn Sinkewicz, 2009. "Marriage: Cause or mere indicator of future earnings growth?," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 28(3), pages 417-439.
    20. Lou, Jiehong & Shen, Xingchi & Niemeier, Deb, 2020. "Are stay-at-home orders more difficult to follow for low-income groups?," Journal of Transport Geography, Elsevier, vol. 89(C).
    21. Gernandt, Johannes & Maier, Michael & Pfeiffer, Friedhelm & Rat-Wirtzler, Julie, 2006. "Distributional effects of the high school degree in Germany," ZEW Discussion Papers 06-088, ZEW - Leibniz Centre for European Economic Research.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:k56v8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.