IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v118y2023i542p1152-1163.html
   My bibliography  Save this article

Model-Robust Inference for Clinical Trials that Improve Precision by Stratified Randomization and Covariate Adjustment

Author

Listed:
  • Bingkai Wang
  • Ryoko Susukida
  • Ramin Mojtabai
  • Masoumeh Amin-Esmaeili
  • Michael Rosenblum

Abstract

Two commonly used methods for improving precision and power in clinical trials are stratified randomization and covariate adjustment. However, many trials do not fully capitalize on the combined precision gains from these two methods, which can lead to wasted resources in terms of sample size and trial duration. We derive consistency and asymptotic normality of model-robust estimators that combine these two methods, and show that these estimators can lead to substantial gains in precision and power. Our theorems cover a class of estimators that handle continuous, binary, and time-to-event outcomes; missing outcomes under the missing at random assumption are handled as well. For each estimator, we give a formula for a consistent variance estimator that is model-robust and that fully captures variance reductions from stratified randomization and covariate adjustment. Also, we give the first proof (to the best of our knowledge) of consistency and asymptotic normality of the Kaplan–Meier estimator under stratified randomization, and we derive its asymptotic variance. The above results also hold for the biased-coin covariate-adaptive design. We demonstrate our results using data from three trials of substance use disorder treatments, where the variance reduction due to stratified randomization and covariate adjustment ranges from 1% to 36%. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Bingkai Wang & Ryoko Susukida & Ramin Mojtabai & Masoumeh Amin-Esmaeili & Michael Rosenblum, 2023. "Model-Robust Inference for Clinical Trials that Improve Precision by Stratified Randomization and Covariate Adjustment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1152-1163, April.
  • Handle: RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1152-1163
    DOI: 10.1080/01621459.2021.1981338
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2021.1981338
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2021.1981338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sihui Zhao & Xinbo Wang & Lin Liu & Xin Zhang, 2024. "Covariate Adjustment in Randomized Experiments Motivated by Higher-Order Influence Functions," Papers 2411.08491, arXiv.org, revised Dec 2024.
    2. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1152-1163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.