IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/hpbd8.html
   My bibliography  Save this paper

Local Modeling in a Regression Framework

Author

Listed:
  • Oshan, Taylor M.

Abstract

This chapter introduces the concept of local versus global models and describes one type of local model, Geographically Weighted Regression, and its recent successor, Multiscale Geographically Weighted Regression. The conceptual basis for this type of model is explained in terms of data-borrowing. An empirical example is given to demonstrate both the value of local regression models and freely available software for their calibration.

Suggested Citation

  • Oshan, Taylor M., 2022. "Local Modeling in a Regression Framework," OSF Preprints hpbd8, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:hpbd8
    DOI: 10.31219/osf.io/hpbd8
    as

    Download full text from publisher

    File URL: https://osf.io/download/62956042ddbe492ab6a2204c/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/hpbd8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kelley Pace, R. & Barry, Ronald, 1997. "Sparse spatial autoregressions," Statistics & Probability Letters, Elsevier, vol. 33(3), pages 291-297, May.
    2. Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Christopher & Harris, Paul, 2015. "GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i17).
    3. Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
    4. Ziqi Li & A. Stewart Fotheringham & Taylor M. Oshan & Levi John Wolf, 2020. "Measuring Bandwidth Uncertainty in Multiscale Geographically Weighted Regression Using Akaike Weights," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 110(5), pages 1500-1520, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexis Comber & Khanh Chi & Man Q Huy & Quan Nguyen & Binbin Lu & Hoang H Phe & Paul Harris, 2020. "Distance metric choice can both reduce and induce collinearity in geographically weighted regression," Environment and Planning B, , vol. 47(3), pages 489-507, March.
    2. A. Stewart Fotheringham & M. Sachdeva, 2022. "Scale and local modeling: new perspectives on the modifiable areal unit problem and Simpson’s paradox," Journal of Geographical Systems, Springer, vol. 24(3), pages 475-499, July.
    3. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    4. Oshan, Taylor M. & Kang, Wei, 2024. "Scale and Correlation in Multiscale Geographically Weighted Regression (MGWR)," OSF Preprints cujby, Center for Open Science.
    5. Alexandre Xavier Ywata Carvalho & Pedro Henrique Melo Albuquerque & Gilberto Rezende de Almeida Junior & Rafael Dantas Guimarães & Camilo Rey Laureto, 2009. "Clusterização Hierárquica Espacial com Atributos Binários," Discussion Papers 1428, Instituto de Pesquisa Econômica Aplicada - IPEA.
    6. Simin He & Yusong Xie & Jing Zhang & Yanyun Luo & Qianna Wang, 2025. "Heterogeneity of Ecosystem Service Interactions Through Scale Effects and Time Effects and Their Social-Ecological Determinants in the Tuo River Basin," Land, MDPI, vol. 14(1), pages 1-23, January.
    7. Cui Guo & Jian Kang & Timothy D. Johnson, 2022. "A spatial Bayesian latent factor model for image‐on‐image regression," Biometrics, The International Biometric Society, vol. 78(1), pages 72-84, March.
    8. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    9. Lavado, Rouselle F. & Barrios, Erniel B., 2010. "Spatial Stochastic Frontier Models," Discussion Papers DP 2010-08, Philippine Institute for Development Studies.
    10. David Brasington & Don Haurin, 2005. "Capitalization of Parent, School, and Peer Group Components of School Quality into House Price," Departmental Working Papers 2005-04, Department of Economics, Louisiana State University.
    11. Chunfang Zhao & Yingliang Wu & Yunfeng Chen & Guohua Chen, 2023. "Multiscale Effects of Hedonic Attributes on Airbnb Listing Prices Based on MGWR: A Case Study of Beijing, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    12. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    13. Zaijun Li & Jianquan Cheng & Qiyan Wu, 2016. "Analyzing regional economic development patterns in a fast developing province of China through geographically weighted principal component analysis," Letters in Spatial and Resource Sciences, Springer, vol. 9(3), pages 233-245, October.
    14. Hui Ding & Mei Yao & Riquan Zhang, 2023. "A new estimation in functional linear concurrent model with covariate dependent and noise contamination," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 965-989, November.
    15. Andréia S. Santos & Lucas Teles Faria & Mara Lúcia M. Lopes & Carlos R. Minussi, 2023. "Power Distribution Systems’ Vulnerability by Regions Caused by Electrical Discharges," Energies, MDPI, vol. 16(23), pages 1-19, November.
    16. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    17. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    18. Zhong, Yan & Sang, Huiyan & Cook, Scott J. & Kellstedt, Paul M., 2023. "Sparse spatially clustered coefficient model via adaptive regularization," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    19. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
    20. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:hpbd8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.