IDEAS home Printed from https://ideas.repec.org/a/taf/raagxx/v110y2020i5p1500-1520.html
   My bibliography  Save this article

Measuring Bandwidth Uncertainty in Multiscale Geographically Weighted Regression Using Akaike Weights

Author

Listed:
  • Ziqi Li
  • A. Stewart Fotheringham
  • Taylor M. Oshan
  • Levi John Wolf

Abstract

Bandwidth, a key parameter in geographically weighted regression models, is closely related to the spatial scale at which the underlying spatially heterogeneous processes being examined take place. Generally, a single optimal bandwidth (geographically weighted regression) or a set of covariate-specific optimal bandwidths (multiscale geographically weighted regression) is chosen based on some criterion, such as the Akaike information criterion (AIC), and then parameter estimation and inference are conditional on the choice of this bandwidth. In this article, we find that bandwidth selection is subject to uncertainty in both single-scale and multiscale geographically weighted regression models and demonstrate that this uncertainty can be measured and accounted for. Based on simulation studies and an empirical example of obesity rates in Phoenix, we show that bandwidth uncertainties can be quantitatively measured by Akaike weights and confidence intervals for bandwidths can be obtained. Understanding bandwidth uncertainty offers important insights about the scales over which different processes operate, especially when comparing covariate-specific bandwidths. Additionally, unconditional parameter estimates can be computed based on Akaike weights accounts for bandwidth selection uncertainty.

Suggested Citation

  • Ziqi Li & A. Stewart Fotheringham & Taylor M. Oshan & Levi John Wolf, 2020. "Measuring Bandwidth Uncertainty in Multiscale Geographically Weighted Regression Using Akaike Weights," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 110(5), pages 1500-1520, September.
  • Handle: RePEc:taf:raagxx:v:110:y:2020:i:5:p:1500-1520
    DOI: 10.1080/24694452.2019.1704680
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24694452.2019.1704680
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24694452.2019.1704680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihan Tong & Zhenxing Kong & Xiao Jia & Hanyue Zhang & Yimin Zhang, 2022. "Multiscale Impact of Environmental and Socio-Economic Factors on Low Physical Fitness among Chinese Adolescents and Regionalized Coping Strategies," IJERPH, MDPI, vol. 19(20), pages 1-24, October.
    2. Qinglin Jia & Tao Zhang & Long Cheng & Gang Cheng & Minjie Jin, 2022. "The Impact of the Neighborhood Built Environment on the Walking Activity of Older Adults: A Multi-Scale Spatial Heterogeneity Analysis," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    3. Taylor M. Oshan & Levi J. Wolf & Mehak Sachdeva & Sarah Bardin & A. Stewart Fotheringham, 2022. "A scoping review on the multiplicity of scale in spatial analysis," Journal of Geographical Systems, Springer, vol. 24(3), pages 293-324, July.
    4. Oshan, Taylor M., 2022. "Navigating the methodological landscape in spatial analysis: a comment on ‘A Route Map for Successful Applications of Geographically-Weighted Regression’," OSF Preprints rckzj, Center for Open Science.
    5. Feili Wei & Shuang Li & Ze Liang & Aiqiong Huang & Zheng Wang & Jiashu Shen & Fuyue Sun & Yueyao Wang & Huan Wang & Shuangcheng Li, 2021. "Analysis of Spatial Heterogeneity and the Scale of the Impact of Changes in PM 2.5 Concentrations in Major Chinese Cities between 2005 and 2015," Energies, MDPI, vol. 14(11), pages 1-20, June.
    6. Oshan, Taylor M., 2022. "Local Modeling in a Regression Framework," OSF Preprints hpbd8, Center for Open Science.
    7. A. Stewart Fotheringham & M. Sachdeva, 2022. "Scale and local modeling: new perspectives on the modifiable areal unit problem and Simpson’s paradox," Journal of Geographical Systems, Springer, vol. 24(3), pages 475-499, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:raagxx:v:110:y:2020:i:5:p:1500-1520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/raag .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.