IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/hjp4z.html
   My bibliography  Save this paper

Forecasting rural depopulation in Spain

Author

Listed:
  • González-Leonardo, Miguel

Abstract

Population projections and forecasts below the regional level are widely used by governments for spatial planning, including service provision and infrastructure. However, projections and forecasts are often produced only at national and regional scales. In this paper, I use autoregressive integrated moving average (ARIMA) models to forecast the rural population size of the 50 Spanish provinces up to 2040. The results predict that the rural population in Spain will remain around 8 million inhabitants until 2024, but 25 out of 50 provinces will experience rural population shrinkage, particularly those in Northwest Spain. For instance, Ourense, Zamora, and León are forecasted to lose more than 30% of the rural population. Additionally, depopulation is expected to accelerate across provinces affected by rural population shrinkage.

Suggested Citation

  • González-Leonardo, Miguel, 2025. "Forecasting rural depopulation in Spain," OSF Preprints hjp4z, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:hjp4z
    DOI: 10.31219/osf.io/hjp4z
    as

    Download full text from publisher

    File URL: https://osf.io/download/67880f31ce07cd6212aea7a9/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/hjp4z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    2. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Leonardo, Miguel, 2025. "Forecasting rural depopulation in Spain," OSF Preprints hjp4z_v1, Center for Open Science.
    2. Alfred Michael Dockery & Mark N. Harris & Nicholas Holyoak & Ranjodh B. Singh, 2021. "A methodology for projecting sparse populations and its application to remote Indigenous communities," Journal of Geographical Systems, Springer, vol. 23(1), pages 37-61, January.
    3. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    4. Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Monika Papież & Sabina Denkowska, 2010. "The Analysis of Mortality Changes In Selected European Countries in the Period 1960–2006," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 11(3), pages 563-584, December.
    6. Valeria D’Amato & Emilia Di Lorenzo & Steven Haberman & Maria Russolillo & Marilena Sibillo, 2011. "The Poisson Log-Bilinear Lee-Carter Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 315-333.
    7. repec:hum:wpaper:sfb649dp2009-015 is not listed on IDEAS
    8. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    9. Alan J. Auerbach & Ronald Lee, 2009. "Notional Defined Contribution Pension Systems in a Stochastic Context: Design and Stability," NBER Chapters, in: Social Security Policy in a Changing Environment, pages 43-68, National Bureau of Economic Research, Inc.
    10. Chen, Quanrun & Dietzenbacher, Erik & Los, Bart, 2015. "The effects of ageing and urbanization on China's future population and labor force," Research Report 15002-GEM, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    11. Rodríguez, Julio, 2008. "A methodology for population projections: an application to Spain," DES - Working Papers. Statistics and Econometrics. WS ws084512, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. repec:hum:wpaper:sfb649dp2008-052 is not listed on IDEAS
    13. Alonso Meseguer, Javier & Tuesta Cárdenas, David & Torres Torres, Diego & Villamide Muiña, Begoña, 2015. "Proyecciones de tablas generacionales dinámicas de mortalidad y riesgo de longevidad en países en vías de desarrollo: El caso chileno/Projections of Dynamic Generational Mortality Tables and Longevity," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 33, pages 941-964, Septiembr.
    14. Yuchao Chen & Yunus A. Kinkhabwala & Boris Barron & Matthew Hall & Tomás A. Arias & Itai Cohen, 2024. "Small-area population forecasting in a segregated city using density-functional fluctuation theory," Journal of Computational Social Science, Springer, vol. 7(3), pages 2255-2275, December.
    15. Fullerton, Thomas M., Jr. & Walke, Adam G. & Villavicencio, Diana, 2015. "An Econometric Approach for Modeling Population Change in Doña Ana County, New Mexico," MPRA Paper 71141, University Library of Munich, Germany, revised 28 Jan 2015.
    16. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    17. Osman Gulseven, 2016. "Forecasting Population and Demographic Composition of Kuwait Until 2030," International Journal of Economics and Financial Issues, Econjournals, vol. 6(4), pages 1429-1435.
    18. Ugofilippo Basellini & Søren Kjærgaard & Carlo Giovanni Camarda, 2020. "An age-at-death distribution approach to forecast cohort mortality," Working Papers axafx5_3agsuwaphvlfk, French Institute for Demographic Studies.
    19. Beutner, Eric & Reese, Simon & Urbain, Jean-Pierre, 2017. "Identifiability issues of age–period and age–period–cohort models of the Lee–Carter type," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 117-125.
    20. Joop de Beer, 2011. "A new relational method for smoothing and projecting age-specific fertility rates: TOPALS," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(18), pages 409-454.
    21. Basellini, Ugofilippo & Kjærgaard, Søren & Camarda, Carlo Giovanni, 2020. "An age-at-death distribution approach to forecast cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 129-143.
    22. Verhagen, Mark D., 2021. "A Pragmatist's Guide to Using Prediction in the Social Sciences," SocArXiv tjkcy_v1, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:hjp4z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.