IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/gbfz8_v1.html
   My bibliography  Save this paper

Connected bikeability in London: which localities are better connected by bike and does this matter?

Author

Listed:
  • Beecham, Roger
  • Tait, Caroline
  • Lovelace, Robin
  • Yang, Yuanxuan

Abstract

Bikeability, the extent to which a route network enables cycling for everyday travel, is a frequently-cited theme for increasing and diversifying cycling uptake and therefore one that attracts much research attention. Indexes designed to quantify bikeability typically generate a single bikeability value for a single locality. Important to transport planners making and evaluating infrastructure decisions, however, is how well-connected by bike are pairs of localities. For this it is necessary to estimate the bikeability of plausible routes connecting different parts of a city. We approximate routes for all origin-destination trips cycled in the London Cycle Hire Scheme for 2018 and estimate the bikeability of each route, linking to the newly-released London Cycle Infrastructure Database. We then divide the area of inner London covered by the bikeshare scheme into ‘villages’ and profile how bikeability varies for trips connecting those villages – we call this connected bikeability. Our bikeability scores vary geographically with certain localities in London better connected by bike than others. A key finding is that higher levels of connected bikeability are conferred to origin- destination village pairs of strategic importance, aligning with the stated ambition of recent cycling infrastructure interventions. The geography of connected bikeability maps to the commuting needs of London’s workers and we find some evidence that connected bikeability has a positive association with observed cycling activity, especially so when studying patterns of cycling to job-rich villages.

Suggested Citation

  • Beecham, Roger & Tait, Caroline & Lovelace, Robin & Yang, Yuanxuan, 2022. "Connected bikeability in London: which localities are better connected by bike and does this matter?," OSF Preprints gbfz8_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:gbfz8_v1
    DOI: 10.31219/osf.io/gbfz8_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/624da2a23dc4af012e5ba01b/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/gbfz8_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang, Yuanxuan & Beecham, Roger & Heppenstall, Alison & Turner, Andy & Comber, Alexis, 2022. "Understanding the impacts of public transit disruptions on bikeshare schemes and cycling behaviours using spatiotemporal and graph-based analysis: A case study of four London Tube strikes," Journal of Transport Geography, Elsevier, vol. 98(C).
    2. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    3. Nielsen, Thomas Alexander Sick & Skov-Petersen, Hans, 2018. "Bikeability – Urban structures supporting cycling. Effects of local, urban and regional scale urban form factors on cycling from home and workplace locations in Denmark," Journal of Transport Geography, Elsevier, vol. 69(C), pages 36-44.
    4. Jessica Hullman & Paul Resnick & Eytan Adar, 2015. "Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-25, November.
    5. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Beecham & Yuanxuan Yang & Caroline Tait & Robin Lovelace, 2023. "Connected bikeability in London: Which localities are better connected by bike and does this matter?," Environment and Planning B, , vol. 50(8), pages 2103-2117, October.
    2. Beecham, Roger & Tait, Caroline & Lovelace, Robin & Yang, Yuanxuan, 2022. "Connected bikeability in London: which localities are better connected by bike and does this matter?," OSF Preprints gbfz8, Center for Open Science.
    3. Elise Desjardins & Christopher D. Higgins & Darren M. Scott & Emma Apatu & Antonio Páez, 2022. "Correlates of bicycling trip flows in Hamilton, Ontario: fastest, quietest, or balanced routes?," Transportation, Springer, vol. 49(3), pages 867-895, June.
    4. Ali Al-Ramini & Mohammad A Takallou & Daniel P Piatkowski & Fadi Alsaleem, 2022. "Quantifying changes in bicycle volumes using crowdsourced data," Environment and Planning B, , vol. 49(6), pages 1612-1630, July.
    5. Dafeng Xu, 2020. "Free Wheel, Free Will! The Effects of Bikeshare Systems on Urban Commuting Patterns in the U.S," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(3), pages 664-685, June.
    6. Van Veghel, Daniel & Scott, Darren M., 2024. "Investigating the impacts of bike lanes on bike share ridership: A holistic approach and demonstration," Journal of Transport Geography, Elsevier, vol. 115(C).
    7. Adsule, Poonam & Kadali, B Raghuram, 2024. "Analysis of contributing factors in decision to bicycle in developing countries context," Transport Policy, Elsevier, vol. 147(C), pages 50-58.
    8. Büchel, Beda & Marra, Alessio Daniele & Corman, Francesco, 2022. "COVID-19 as a window of opportunity for cycling: Evidence from the first wave," Transport Policy, Elsevier, vol. 116(C), pages 144-156.
    9. Martin, Adam & Morciano, Marcello & Suhrcke, Marc, 2021. "Determinants of bicycle commuting and the effect of bicycle infrastructure investment in London: Evidence from UK census microdata," Economics & Human Biology, Elsevier, vol. 41(C).
    10. Mogens Fosgerau & Miroslawa Lukawska & Mads Paulsen & Thomas Kj{ae}r Rasmussen, 2022. "Bikeability and the induced demand for cycling," Papers 2210.02504, arXiv.org, revised Dec 2022.
    11. Oviedo, Daniel & Sabogal-Cardona, Orlando, 2022. "Arguments for cycling as a mechanism for sustainable modal shifts in Bogotá," Journal of Transport Geography, Elsevier, vol. 99(C).
    12. Rodriguez-Valencia, Alvaro & Rosas-Satizábal, Daniel & Gordo, Daniel & Ochoa, Andrés, 2019. "Impact of household proximity to the cycling network on bicycle ridership: The case of Bogotá," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    13. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    14. Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
    15. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    16. Zheng Wen & Dongwei Tian & Naiming Wu, 2024. "Modeling and Analyzing the Spatiotemporal Travel Patterns of Bike Sharing: A Case Study of Citi Bike in New York," Sustainability, MDPI, vol. 17(1), pages 1-21, December.
    17. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    18. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    19. repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
    20. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    21. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:gbfz8_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.