IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/f9rqg_v1.html
   My bibliography  Save this paper

Bayesian beta regressions with brms in R: A tutorial for phoneticians

Author

Listed:
  • Coretta, Stefano

    (University of Edinburgh)

  • Bürkner, Paul - Christian

Abstract

Phonetic research frequently involves analyzing numeric continuous outcome variables, such as durations, frequencies, loudness, and ratios. Another commonly used outcome type is proportions, including measures like the proportion of voicing during closure, gesture amplitude, and nasalance. Despite their bounded nature, proportions are often modeled using Gaussian regression, largely due to the default settings of commonly used statistical functions in R (e.g., lm() and lmer() from lme4). This practice persists in teaching and research, despite the fact that Gaussian models assume unbounded continuous data and may poorly fit proportion data. To address this issue, this tutorial introduces beta regression models, a more appropriate statistical approach for analyzing proportions. The beta distribution provides a flexible framework for modelling continuous data constrained between 0 and 1. The tutorial employs the brms package in R and assumes familiarity with regression modeling but no prior knowledge of Bayesian statistics. The tutorial includes two case studies illustrating the practical implementation of Bayesian beta regression models. Data and code are available at https://github.com/stefanocoretta/beta-phon.

Suggested Citation

  • Coretta, Stefano & Bürkner, Paul - Christian, 2025. "Bayesian beta regressions with brms in R: A tutorial for phoneticians," OSF Preprints f9rqg_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:f9rqg_v1
    DOI: 10.31219/osf.io/f9rqg_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/67ab2e277f78eeafe2d2045f/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/f9rqg_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    2. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    3. Krysicki, Wlodzimierz, 1999. "On some new properties of the beta distribution," Statistics & Probability Letters, Elsevier, vol. 42(2), pages 131-137, April.
    4. Patricia Espinheira & Silvia Ferrari & Francisco Cribari-Neto, 2008. "On beta regression residuals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(4), pages 407-419.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-Chu Chien, 2011. "Diagnostic plots in beta-regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1607-1622, July.
    2. Rahul Goel & Leandro M T Garcia & Anna Goodman & Rob Johnson & Rachel Aldred & Manoradhan Murugesan & Soren Brage & Kavi Bhalla & James Woodcock, 2018. "Estimating city-level travel patterns using street imagery: A case study of using Google Street View in Britain," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-22, May.
    3. Terezinha K. A. Ribeiro & Silvia L. P. Ferrari, 2023. "Robust estimation in beta regression via maximum L $$_q$$ q -likelihood," Statistical Papers, Springer, vol. 64(1), pages 321-353, February.
    4. Yuri S. Maluf & Silvia L. P. Ferrari & Francisco F. Queiroz, 2025. "Robust beta regression through the logit transformation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(1), pages 61-81, January.
    5. Capera-Romero, Laura & Lemus-Esquivel, Juan Sebastián & Estrada, Dairo Ayiber, 2015. "Relaciones crediticias y riesgo de contagio en el mercado interbancario no colateralizado colombiano," Chapters, in: Gómez-González, José Eduardo & Ojeda-Joya, Jair N. (ed.), Política monetaria y estabilidad financiera en economías pequeñas y abiertas, chapter 18, pages 559-616, Banco de la Republica de Colombia.
    6. Edilberto Cepeda-Cuervo & Vicente Núñez-Antón, 2013. "Spatial Double Generalized Beta Regression Models," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 604-628, December.
    7. Edouard Civel & Nathaly Cruz, 2018. "Green, yellow or red lemons? Artefactual field experiment on houses energy labels perception," Working Papers 1809, Chaire Economie du climat.
    8. Xiao-Feng Wang & Bo Hu & Bin Wang & Kuangnan Fang, 2014. "Bayesian generalized varying coefficient models for longitudinal proportional data with errors-in-covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1342-1357, June.
    9. Simon Braem & Hans Van Dyck, 2023. "Larval and adult experience and ecotype affect oviposition behavior in a niche-expanding butterfly," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(4), pages 547-561.
    10. Jalmar M.F. Carrasco & Silvia L.P. Ferrari & Reinaldo B. Arellano-Valle, 2014. "Errors-in-variables beta regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1530-1547, July.
    11. Zhou, Haiming & Huang, Xianzheng, 2022. "Bayesian beta regression for bounded responses with unknown supports," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    12. Weihua Zhao & Riquan Zhang & Yazhao Lv & Jicai Liu, 2014. "Variable selection for varying dispersion beta regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 95-108, January.
    13. Edouard Civel & Nathaly Cruz-Garcia, 2018. "Green, yellow or red lemons? Framed field experiment on houses energy labels perception," EconomiX Working Papers 2018-35, University of Paris Nanterre, EconomiX.
    14. Guillermo Ferreira & Jorge Figueroa-Zúñiga & Mário Castro, 2015. "Partially linear beta regression model with autoregressive errors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 752-775, December.
    15. Jay Verkuilen & Michael Smithson, 2012. "Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 82-113, February.
    16. Yury R. Benites & Vicente G. Cancho & Edwin M. M. Ortega & Roberto Vila & Gauss M. Cordeiro, 2022. "A New Regression Model on the Unit Interval: Properties, Estimation, and Application," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    17. Francisco Cribari-Neto & Sadraque E.F. Lucena, 2015. "Nonnested hypothesis testing in the class of varying dispersion beta regressions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 967-985, May.
    18. Tariq Maqsood & Mark Edwards & Ioanna Ioannou & Ioannis Kosmidis & Tiziana Rossetto & Neil Corby, 2016. "Seismic vulnerability functions for Australian buildings by using GEM empirical vulnerability assessment guidelines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1625-1650, February.
    19. Ospina, Raydonal & Ferrari, Silvia L.P., 2012. "A general class of zero-or-one inflated beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1609-1623.
    20. Tariq Maqsood & Mark Edwards & Ioanna Ioannou & Ioannis Kosmidis & Tiziana Rossetto & Neil Corby, 2016. "Seismic vulnerability functions for Australian buildings by using GEM empirical vulnerability assessment guidelines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1625-1650, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:f9rqg_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.