IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v88y2025i1d10.1007_s00184-024-00949-1.html
   My bibliography  Save this article

Robust beta regression through the logit transformation

Author

Listed:
  • Yuri S. Maluf

    (University of São Paulo)

  • Silvia L. P. Ferrari

    (University of São Paulo)

  • Francisco F. Queiroz

    (University of São Paulo)

Abstract

Beta regression models are employed to model continuous response variables in the unit interval, like rates, percentages, or proportions. Their applications rise in several areas, such as medicine, environment research, finance, and natural sciences. The maximum likelihood estimation is widely used to make inferences for the parameters. Nonetheless, it is well-known that the maximum likelihood-based inference suffers from the lack of robustness in the presence of outliers. Such a case can bring severe bias and misleading conclusions. Recently, robust estimators for beta regression models were presented in the literature. However, these estimators require non-trivial restrictions in the parameter space, which limit their application. This paper develops new robust estimators that overcome this drawback. Their asymptotic and robustness properties are studied, and robust Wald-type tests are introduced. Simulation results evidence the merits of the new robust estimators. Inference and diagnostics using the new estimators are illustrated in an application to health insurance coverage data. The new R package robustbetareg is introduced.

Suggested Citation

  • Yuri S. Maluf & Silvia L. P. Ferrari & Francisco F. Queiroz, 2025. "Robust beta regression through the logit transformation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(1), pages 61-81, January.
  • Handle: RePEc:spr:metrik:v:88:y:2025:i:1:d:10.1007_s00184-024-00949-1
    DOI: 10.1007/s00184-024-00949-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-024-00949-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-024-00949-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:88:y:2025:i:1:d:10.1007_s00184-024-00949-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.