IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i5p967-985.html
   My bibliography  Save this article

Nonnested hypothesis testing in the class of varying dispersion beta regressions

Author

Listed:
  • Francisco Cribari-Neto
  • Sadraque E.F. Lucena

Abstract

Oftentimes practitioners have at their disposal two or more competing models with different parametric structures. Whenever each model cannot be obtained as a particular case of the remaining models through a set of parametric restrictions the models are said to be nonnested. Tests that can be used to select a model from a set of nonnested linear regression models are available in the literature. Particularly, useful tests are the J and MJ tests. In this paper, we extend these two tests to the class of beta regression models, which is useful for modeling responses that assume values in the standard unit interval, . We report Monte Carlo evidence on the finite sample behavior of the tests. Bootstrap-based testing inference is also considered. Overall, the best performing test is the bootstrap MJ test. Two empirical applications are presented and discussed.

Suggested Citation

  • Francisco Cribari-Neto & Sadraque E.F. Lucena, 2015. "Nonnested hypothesis testing in the class of varying dispersion beta regressions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 967-985, May.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:5:p:967-985
    DOI: 10.1080/02664763.2014.993368
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.993368
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.993368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davidson, Russell & MacKinnon, James G, 1981. "Several Tests for Model Specification in the Presence of Alternative Hypotheses," Econometrica, Econometric Society, vol. 49(3), pages 781-793, May.
    2. McAleer, Michael, 1995. "The significance of testing empirical non-nested models," Journal of Econometrics, Elsevier, vol. 67(1), pages 149-171, May.
    3. Sunil Sapra, 2007. "Robust nonnested hypothesis testing," Applied Economics Letters, Taylor & Francis Journals, vol. 15(1), pages 1-4.
    4. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    5. Figueroa-Zúñiga, Jorge I. & Arellano-Valle, Reinaldo B. & Ferrari, Silvia L.P., 2013. "Mixed beta regression: A Bayesian perspective," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 137-147.
    6. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1983. "Testing nested or non-nested hypotheses," Journal of Econometrics, Elsevier, vol. 21(1), pages 83-115, January.
    7. Michelis, Leo, 1999. "The distributions of the J and Cox non-nested tests in regression models with weakly correlated regressors," Journal of Econometrics, Elsevier, vol. 93(2), pages 369-401, December.
    8. Mizon, Grayham E & Richard, Jean-Francois, 1986. "The Encompassing Principle and Its Application to Testing Non-nested Hypotheses," Econometrica, Econometric Society, vol. 54(3), pages 657-678, May.
    9. Ospina, Raydonal & Ferrari, Silvia L.P., 2012. "A general class of zero-or-one inflated beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1609-1623.
    10. Leslie G. Godfrey, 2011. "Robust Non‐nested Testing for Ordinary Least Squares Regression when Some of the Regressors are Lagged Dependent Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 651-668, October.
    11. Yanqin Fan & Qi Li, 1995. "Bootstrapping J-type tests for non-nested regression models," Economics Letters, Elsevier, vol. 48(2), pages 107-112, May.
    12. Patricia Espinheira & Silvia Ferrari & Francisco Cribari-Neto, 2008. "On beta regression residuals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(4), pages 407-419.
    13. Dastoor, Naorayex K., 1983. "Some aspects of testing non-nested hypotheses," Journal of Econometrics, Elsevier, vol. 21(2), pages 213-228, February.
    14. Simas, Alexandre B. & Barreto-Souza, Wagner & Rocha, Andréa V., 2010. "Improved estimators for a general class of beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 348-366, February.
    15. Peter Burridge & Bernard Fingleton, 2010. "Bootstrap Inference in Spatial Econometrics: the J-test," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 93-119.
    16. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(1), pages 17-43, March.
    17. Godfrey, L. G., 1998. "Tests of non-nested regression models some results on small sample behaviour and the bootstrap," Journal of Econometrics, Elsevier, vol. 84(1), pages 59-74, May.
    18. Hagemann, Andreas, 2012. "A simple test for regression specification with non-nested alternatives," Journal of Econometrics, Elsevier, vol. 166(2), pages 247-254.
    19. Harry Kelejian, 2008. "A spatial J-test for model specification against a single or a set of non-nested alternatives," Letters in Spatial and Resource Sciences, Springer, vol. 1(1), pages 3-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Souza, Tatiene C. & Cribari–Neto, Francisco, 2018. "Intelligence and religious disbelief in the United States," Intelligence, Elsevier, vol. 68(C), pages 48-57.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Fei & Lee, Lung-fei, 2013. "Cox-type tests for competing spatial autoregressive models with spatial autoregressive disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 590-616.
    2. Bernard Fingleton & Silvia Palombi, 2016. "Bootstrap J -Test for Panel Data Models with Spatially Dependent Error Components, a Spatial Lag and Additional Endogenous Variables," Spatial Economic Analysis, Taylor & Francis Journals, vol. 11(1), pages 7-26, March.
    3. Debarsy, Nicolas & Ertur, Cem, 2019. "Interaction matrix selection in spatial autoregressive models with an application to growth theory," Regional Science and Urban Economics, Elsevier, vol. 75(C), pages 49-69.
    4. Han, Xiaoyi & Lee, Lung-fei, 2013. "Model selection using J-test for the spatial autoregressive model vs. the matrix exponential spatial model," Regional Science and Urban Economics, Elsevier, vol. 43(2), pages 250-271.
    5. Davidson, Russell & MacKinnon, James G., 2002. "Bootstrap J tests of nonnested linear regression models," Journal of Econometrics, Elsevier, vol. 109(1), pages 167-193, July.
    6. Chen, Yi-Ting & Kuan, Chung-Ming, 2002. "The pseudo-true score encompassing test for non-nested hypotheses," Journal of Econometrics, Elsevier, vol. 106(2), pages 271-295, February.
    7. McAleer, Michael, 1994. "Sherlock Holmes and the Search for Truth: A Diagnostic Tale," Journal of Economic Surveys, Wiley Blackwell, vol. 8(4), pages 317-370, December.
    8. John Sequeira & MICHAEL McALEER, 2000. "Testing the risk premium and cost-of-carry hypotheses for currency futures contracts," Applied Financial Economics, Taylor & Francis Journals, vol. 10(3), pages 277-289.
    9. repec:rri:wpaper:201303 is not listed on IDEAS
    10. Otsu, Taisuke & Whang, Yoon-Jae, 2011. "Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood," Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.
    11. McAleer, Michael, 1995. "The significance of testing empirical non-nested models," Journal of Econometrics, Elsevier, vol. 67(1), pages 149-171, May.
    12. West, Kenneth D., 2001. "Encompassing tests when no model is encompassing," Journal of Econometrics, Elsevier, vol. 105(1), pages 287-308, November.
    13. Hagemann, Andreas, 2012. "A simple test for regression specification with non-nested alternatives," Journal of Econometrics, Elsevier, vol. 166(2), pages 247-254.
    14. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    15. Nicolas DEBARSY & Cem ERTUR, 2016. "Interaction matrix selection in spatial econometrics with an application to growth theory," LEO Working Papers / DR LEO 2172, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    16. Mcleer, M. & Pesaran, M.H. & Bera, A.K., 1990. "Alternative Approaches To Testing Non-Nested Models With Autocorrelated Disturbances: An Application To Models Of U.S. Unemployment," Papers 9004, Tilburg - Center for Economic Research.
    17. Phillip Li, 2018. "Efficient MCMC estimation of inflated beta regression models," Computational Statistics, Springer, vol. 33(1), pages 127-158, March.
    18. John Sequeira & Michael McAleer, 2000. "A market-augmented model for SIMEX Brent crude oil futures contracts," Applied Financial Economics, Taylor & Francis Journals, vol. 10(5), pages 543-552.
    19. Wagner Hugo Bonat & Paulo Justiniano Ribeiro & Walmes Marques Zeviani, 2015. "Likelihood analysis for a class of beta mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 252-266, February.
    20. Russell Davidson & James MacKinnon, 2002. "Fast Double Bootstrap Tests Of Nonnested Linear Regression Models," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 419-429.
    21. Cepeda-Cuervo Edilberto & Garrido Liliana, 2015. "Bayesian beta regression models with joint mean and dispersion modeling," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 49-58, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:5:p:967-985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.