IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/avkgj_v1.html
   My bibliography  Save this paper

Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias

Author

Listed:
  • Augusteijn, Hilde Elisabeth Maria

    (Tilburg University)

  • van Aert, Robbie Cornelis Maria
  • van Assen, Marcel A. L. M.

Abstract

Publication bias remains to be a great challenge when conducting a meta-analysis. It may result in overestimated effect sizes, increased frequency of false positives, and over- or underestimation of the effect size heterogeneity parameter. A new method is introduced, Bayesian Meta-Analytic Snapshot (BMAS), which evaluates both effect size and its heterogeneity and corrects for potential publication bias. It evaluates the probability of the true effect size being zero, small, medium or large, and the probability of true heterogeneity being zero, small, medium or large. This approach, which provides an intuitive evaluation of uncertainty in the evaluation of effect size and heterogeneity, is illustrated with a real-data example, a simulation study, and a Shiny web application of BMAS.

Suggested Citation

  • Augusteijn, Hilde Elisabeth Maria & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2021. "Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias," OSF Preprints avkgj_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:avkgj_v1
    DOI: 10.31219/osf.io/avkgj_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/6053162990bb4e006614f8cb/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/avkgj_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:avkgj_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.