IDEAS home Printed from https://ideas.repec.org/p/nzb/nzbdps/2010-13.html
   My bibliography  Save this paper

What drives core inflation? A dynamic factor model analysis of tradable and nontradable prices

Author

Abstract

I develop a new estimate of core inflation for New Zealand and Australia based on a dynamic factor model. By using an over-identification restriction, the factors of the model are classified as tradable and nontradable factors. This innovation allows us to examine the relative contributions of tradable and nontradable prices towards core inflation. The results show that core inflation in both countries is primarily driven by the nontradable factor. The nontradable factor also explains significantly more of the variance in headline inflation relative to the tradable factor. Finally, both the tradable and nontradable factors show similar profiles across both countries suggesting common drivers.

Suggested Citation

  • Michael Kirker, 2010. "What drives core inflation? A dynamic factor model analysis of tradable and nontradable prices," Reserve Bank of New Zealand Discussion Paper Series DP2010/13, Reserve Bank of New Zealand.
  • Handle: RePEc:nzb:nzbdps:2010/13
    as

    Download full text from publisher

    File URL: http://www.rbnz.govt.nz/-/media/ReserveBank/Files/Publications/Discussion%20papers/2010/dp10-13.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristadoro, Riccardo & Forni, Mario & Reichlin, Lucrezia & Veronese, Giovanni, 2005. "A Core Inflation Indicator for the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 539-560, June.
    2. Emanuel Moench & Serena Ng & Simon Potter, 2013. "Dynamic Hierarchical Factor Model," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1811-1817, December.
    3. Reichlin, Lucrezia & Forni, Mario & Cristadoro, Riccardo & Veronese, Giovanni, 2001. "A Core Inflation Index for the Euro Area," CEPR Discussion Papers 3097, C.E.P.R. Discussion Papers.
    4. Viv Hall & Kunhong Kim & Robert Buckle, 1998. "Pacific rim business cycle analysis: Synchronisation and volatility," New Zealand Economic Papers, Taylor & Francis Journals, vol. 32(2), pages 129-159.
    5. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Günes Kamber & Benjamin Wong, 2016. "Testing an Interpretation of Core Inflation Measures in New Zealand," Reserve Bank of New Zealand Analytical Notes series AN2016/06, Reserve Bank of New Zealand.
    2. Mikael Khan & Louis Morel & Patrick Sabourin, 2013. "The Common Component of CPI: An Alternative Measure of Underlying Inflation for Canada," Staff Working Papers 13-35, Bank of Canada.
    3. Bańbura, Marta & Bobeica, Elena, 2020. "PCCI – a data-rich measure of underlying inflation in the euro area," Statistics Paper Series 38, European Central Bank.
    4. Satish Ranchhod, 2013. "Measures of New Zealand core inflation," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 76, pages 3-11, March.
    5. Bjarni G. Einarsson, 2014. "A Dynamic Factor Model for Icelandic Core Inflation," Economics wp67, Department of Economics, Central bank of Iceland.
    6. Nicholas Sander, 2013. "Fresh perspectives on unobservable variables: Data decomposition of the Kalman smoother," Reserve Bank of New Zealand Analytical Notes series AN2013/09, Reserve Bank of New Zealand.
    7. Aðalheiður Ó. Guðlaugsdóttir & Lilja S. Kro, 2018. "The common component of the CPI - A trendy measure of Icelandic underlying inflation," Economics wp78, Department of Economics, Central bank of Iceland.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    2. Hervé Le Bihan & Danilo Leiva-León & Matías Pacce, 2023. "Underlying inflation and asymetric risks," Working Papers 2319, Banco de España.
    3. Bai, Jushan & Wang, Peng, 2012. "Identification and estimation of dynamic factor models," MPRA Paper 38434, University Library of Munich, Germany.
    4. Amstad, Marlene & Fischer, Andreas M., 2010. "Monthly pass-through ratios," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1202-1213, July.
    5. Viv B. Hall & C. John McDermott, 2006. "The New Zealand Business Cycle: Return To Golden Days?," CAMA Working Papers 2006-21, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Neville Francis & Michael T. Owyang & Ozge Savascin, 2017. "An endogenously clustered factor approach to international business cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1261-1276, November.
    7. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.
    8. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    9. Mariam Camarero & Juan Sapena & Cecilio Tamarit, 2020. "Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 87-114, June.
    10. Anton Muscatelli & Patrizio Tirelli & Carmine Trecroci, 2001. "Monetary and Fiscal Policy Interactions over the Cycle: Some Empirical Evidence," Working Papers 2002_13, Business School - Economics, University of Glasgow, revised Oct 2002.
    11. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    12. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    13. Francesco Bianchi, 2013. "Regime Switches, Agents' Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 463-490.
    14. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    15. Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2014. "Are there gains from pooling real-time oil price forecasts?," Energy Economics, Elsevier, vol. 46(S1), pages 33-43.
    16. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    17. He, Hui & Yang, Jiawen, 2011. "Regime-switching analysis of ADR home market pass-through," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 204-214, January.
    18. Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "COVID-19 and stock returns: Evidence from the Markov switching dependence approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    19. John R. Freeman & Jude C. Hays & Helmut Stix, 1999. "Democracy and Markets: The Case of Exchange Rates," Working Papers 39, Oesterreichische Nationalbank (Austrian Central Bank).
    20. Bansal, Ravi & Miller, Shane & Song, Dongho & Yaron, Amir, 2021. "The term structure of equity risk premia," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1209-1228.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nzb:nzbdps:2010/13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Reserve Bank of New Zealand Knowledge Centre (email available below). General contact details of provider: https://edirc.repec.org/data/rbngvnz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.