IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v32y2017i7p1261-1276.html
   My bibliography  Save this article

An endogenously clustered factor approach to international business cycles

Author

Listed:
  • Neville Francis
  • Michael T. Owyang
  • Ozge Savascin

Abstract

Factor models have become useful tools for studying international business cycles. Block factor models can be especially useful as the zero restrictions on the loadings of some factors may provide some economic interpretation of the factors. These models, however, require the econometrician to predefine the blocks, leading to potential misspecification. In Monte Carlo experiments, we show that even a small misspecification can lead to substantial declines in fit. We propose an alternative model in which the blocks are chosen endogenously. The model is estimated in a Bayesian framework using a hierarchical prior, which allows us to incorporate series†level covariates that may influence and explain how the series are grouped. Using international business cycle data, we find our country clusters differ in important ways from those identified by geography alone. In particular, we find that similarities in institutions (e.g., legal systems, language diversity) may be just as important as physical proximity for analyzing business cycle comovements.

Suggested Citation

  • Neville Francis & Michael T. Owyang & Ozge Savascin, 2017. "An endogenously clustered factor approach to international business cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1261-1276, November.
  • Handle: RePEc:wly:japmet:v:32:y:2017:i:7:p:1261-1276
    DOI: 10.1002/jae.2577
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.2577
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.2577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    2. Baxter, Marianne & Kouparitsas, Michael A., 2005. "Determinants of business cycle comovement: a robust analysis," Journal of Monetary Economics, Elsevier, vol. 52(1), pages 113-157, January.
    3. Chib, Siddhartha, 1993. "Bayes regression with autoregressive errors : A Gibbs sampling approach," Journal of Econometrics, Elsevier, vol. 58(3), pages 275-294, August.
    4. Norrbin, Stefan C. & Schlagenhauf, Don E., 1996. "The role of international factors in the business cycle: A multi-country study," Journal of International Economics, Elsevier, vol. 40(1-2), pages 85-104, February.
    5. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    6. Clark, Todd E. & van Wincoop, Eric, 2001. "Borders and business cycles," Journal of International Economics, Elsevier, vol. 55(1), pages 59-85, October.
    7. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-380, October.
    8. Hong, Yoo Soo, 2005. "Republic of Korea," Documentos de Proyectos 4161, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    9. Emanuel Moench & Serena Ng & Simon Potter, 2013. "Dynamic Hierarchical Factor Model," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1811-1817, December.
    10. Ayhan Kose, M. & Otrok, Christopher & Whiteman, Charles H., 2008. "Understanding the evolution of world business cycles," Journal of International Economics, Elsevier, vol. 75(1), pages 110-130, May.
    11. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    12. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 393-395, October.
    13. James D. Hamilton & Michael T. Owyang, 2012. "The Propagation of Regional Recessions," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 935-947, November.
    14. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    15. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    16. Sylvia Kaufmann, 2010. "Dating and forecasting turning points by Bayesian clustering with dynamic structure: a suggestion with an application to Austrian data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 309-344.
    17. Natalia Ponomareva & Hajime Katayama, 2010. "Does the version of the Penn World Tables matter? An analysis of the relationship between growth and volatility," Canadian Journal of Economics, Canadian Economics Association, vol. 43(1), pages 152-179, February.
    18. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    19. Ahmed, Shaghil & Ickes, Barry W. & Ping Wang & Byung Sam Yoo, 1993. "International Business Cycles," American Economic Review, American Economic Association, vol. 83(3), pages 335-359, June.
    20. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    21. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayhan Kose, M. & Otrok, Christopher & Whiteman, Charles H., 2008. "Understanding the evolution of world business cycles," Journal of International Economics, Elsevier, vol. 75(1), pages 110-130, May.
    2. Michael T. Owyang & Jeremy Piger & Daniel Soques, 2022. "Contagious switching," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 415-432, March.
    3. U. Bergman, 2008. "Finnish and Swedish business cycles in a global context," International Economics and Economic Policy, Springer, vol. 5(1), pages 49-69, July.
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    5. Eickmeier, Sandra, 2007. "Business cycle transmission from the US to Germany--A structural factor approach," European Economic Review, Elsevier, vol. 51(3), pages 521-551, April.
    6. U. Michael Bergman & Lars Jonung, 2011. "Business Cycle Synchronization In Europe: Evidence From The Scandinavian Currency Union," Manchester School, University of Manchester, vol. 79(2), pages 268-292, March.
    7. Bai, Jushan & Wang, Peng, 2012. "Identification and estimation of dynamic factor models," MPRA Paper 38434, University Library of Munich, Germany.
    8. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    9. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    10. Karadimitropoulou, Aikaterini, 2018. "Advanced economies and emerging markets: Dissecting the drivers of business cycle synchronization," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 115-130.
    11. Claudio Morana, 2010. "Heteroskedastic Factor Vector Autoregressive Estimation of Persistent and Non Persistent Processes Subject to Structural Breaks," ICER Working Papers - Applied Mathematics Series 36-2010, ICER - International Centre for Economic Research.
    12. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    13. Azcona, Nestor, 2022. "Trade and business cycle synchronization: The role of common trade partners," International Economics, Elsevier, vol. 170(C), pages 190-201.
    14. Haroon Mumtaz & Saverio Simonelli & Paolo Surico, 2011. "International Comovements, Business Cycle and Inflation: a Historical Perspective," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 176-198, January.
    15. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    16. Mario Crucini & Ayhan Kose & Christopher Otrok, 2011. "What are the driving forces of international business cycles?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 156-175, January.
    17. Necati Tekatli, 2007. "Generalized Factor Models: A Bayesian Approach," Working Papers 334, Barcelona School of Economics.
    18. Hernández-Murillo, Rubén & Owyang, Michael T. & Rubio, Margarita, 2017. "Clustered housing cycles," Regional Science and Urban Economics, Elsevier, vol. 66(C), pages 185-197.
    19. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    20. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:32:y:2017:i:7:p:1261-1276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.