IDEAS home Printed from https://ideas.repec.org/p/nzb/nzbans/2020-05.html
   My bibliography  Save this paper

Regional Labour Market Spillovers

Author

Abstract

This analytical note examines how unemployment in one region could spill over and influence unemployment in other regions. The paper finds rising unemployment in Auckland and Waikato has the biggest impact on unemployment around New Zealand. In contrast, rising unemployment in the Upper South Island, Southland, and Taranaki generate few spillovers into other regions. The modelling indicates that regions with the largest spillovers can be used to improve the accuracy of national unemployment forecasts. This can help inform the Reserve Bank when it sets monetary policy to achieve its mandate in supporting employment in New Zealand. Watch Cameron Haworth from the Reserve Bank's Economics team explain how unemployment in one region can effect joblessness in another region.

Suggested Citation

  • Cameron Haworth, 2020. "Regional Labour Market Spillovers," Reserve Bank of New Zealand Analytical Notes series AN2020/05, Reserve Bank of New Zealand.
  • Handle: RePEc:nzb:nzbans:2020/05
    as

    Download full text from publisher

    File URL: https://www.rbnz.govt.nz/-/media/ReserveBank/Files/Publications/Analytical%20notes/2020/AN2020-05.pdf?revision=52b47bb5-2da5-4034-b1c9-9cc5c926bd14
    Download Restriction: no

    File URL: https://www.rbnz.govt.nz/-/media/ReserveBank/Files/Publications/Analytical%20notes/2020/AN-2020-05-technical-appendix.pdf?revision=4c6af08a-d964-4547-8499-aa5f1896e8d2
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    2. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    2. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    3. Claeys, Peter & Vašíček, Bořek, 2014. "Measuring bilateral spillover and testing contagion on sovereign bond markets in Europe," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 151-165.
    4. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    5. Aysan, Ahmet Faruk & Batten, Jonathan & Gozgor, Giray & Khalfaoui, Rabeh & Nanaeva, Zhamal, 2024. "Metaverse and financial markets: A quantile-time-frequency connectedness analysis," Research in International Business and Finance, Elsevier, vol. 72(PB).
    6. Elsayed, Ahmed H. & Asutay, Mehmet & ElAlaoui, Abdelkader O. & Bin Jusoh, Hashim, 2024. "Volatility spillover across spot and futures markets: Evidence from dual financial system," Research in International Business and Finance, Elsevier, vol. 71(C).
    7. Cepni, Oguzhan & Gul, Selcuk & Gupta, Rangan, 2020. "Local currency bond risk premia of emerging markets: The role of local and global factors," Finance Research Letters, Elsevier, vol. 33(C).
    8. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    9. Barunik, Jozef & Krehlik, Tomas, 2016. "Measuring the frequency dynamics of financial and macroeconomic connectedness," FinMaP-Working Papers 54, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    10. Bettendorf, Timo & Heinlein, Reinhold, 2019. "Connectedness between G10 currencies: Searching for the causal structure," Discussion Papers 06/2019, Deutsche Bundesbank.
    11. Aslanidis, Nektarios & Bariviera, Aurelio F. & Perez-Laborda, Alejandro, 2021. "Are cryptocurrencies becoming more interconnected?," Economics Letters, Elsevier, vol. 199(C).
    12. Kamil Yilmaz, 2009. "International Business Cycle Spillovers," Koç University-TUSIAD Economic Research Forum Working Papers 0903, Koc University-TUSIAD Economic Research Forum, revised Nov 2009.
    13. Lyu, Chenyan & Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Volatility spillovers and carbon price in the Nordic wholesale electricity markets," Energy Economics, Elsevier, vol. 134(C).
    14. Chen, Yu-Fen & Lin, Fu-Lai & Yeh, Wen-Hung, 2024. "Intra- and inter-sector spillover effects within a supply chain: Evidence from Taiwan electric motorcycle industry," Economics Letters, Elsevier, vol. 240(C).
    15. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    16. Mounir Ben Mbarek & Racha Khairallah & Rochdi Feki, 2015. "Causality relationships between renewable energy, nuclear energy and economic growth in France," Environment Systems and Decisions, Springer, vol. 35(1), pages 133-142, March.
    17. Fasanya, Ismail & Akinbowale, Seun, 2019. "Modelling the return and volatility spillovers of crude oil and food prices in Nigeria," Energy, Elsevier, vol. 169(C), pages 186-205.
    18. Moratis, George, 2021. "Quantifying the spillover effect in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 38(C).
    19. Fernanda Fuentes & Rodrigo Herrera, 2020. "Dynamics of Connectedness in Clean Energy Stocks," Energies, MDPI, vol. 13(14), pages 1-19, July.
    20. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Aygun, Gurcan & Wohar, Mark E., 2021. "Effectives of Monetary Policy under the High and Low Economic Uncertainty States: Evidence from the Major Asian Economies," IZA Discussion Papers 14420, Institute of Labor Economics (IZA).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nzb:nzbans:2020/05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Reserve Bank of New Zealand Knowledge Centre (email available below). General contact details of provider: https://edirc.repec.org/data/rbngvnz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.