Score-driven time series models
Author
Abstract
Suggested Citation
Note: ach34
Download full text from publisher
References listed on IDEAS
- Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
- Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011.
"A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
- Drew Creal & Siem Jan Koopman & André Lucas, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 552-563, October.
- Drew Creal & Siem Jan Koopman & André Lucas, 2010. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Tinbergen Institute Discussion Papers 10-032/2, Tinbergen Institute.
- Delle Monache, Davide & Petrella, Ivan, 2017.
"Adaptive models and heavy tails with an application to inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," MPRA Paper 75424, University Library of Munich, Germany.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," BCAM Working Papers 1603, Birkbeck Centre for Applied Macroeconomics.
- Harvey, Andrew & Thiele, Stephen, 2016.
"Testing against changing correlation,"
Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 575-589.
- Andrew Harvey & Stephen Thiele, 2014. "Testing against Changing Correlation," Cambridge Working Papers in Economics 1439, Faculty of Economics, University of Cambridge.
- Dong Hwan Oh & Andrew J. Patton, 2018.
"Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 181-195, April.
- Dong Hwan Oh & Andrew J. Patton, 2013. "Time-Varying Systemic Risk: Evidence from a Dynamic Copula Model of CDS Spreads," Working Papers 13-30, Duke University, Department of Economics.
- P Gorgi & P R Hansen & P Janus & S J Koopman, 2019.
"Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model,"
Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 1-32.
- Peter Reinhard Hansen & Pawel Janus & Siem Jan Koopman, 2016. "Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model," Tinbergen Institute Discussion Papers 16-061/III, Tinbergen Institute.
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107630024, January.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, November.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017.
"Volatility Modeling with a Generalized t Distribution,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
- Andrew Harvey & Rutger-Jan Lange, 2015. "Volatility Modeling with a Generalized t-distribution," Cambridge Working Papers in Economics 1517, Faculty of Economics, University of Cambridge.
- Siem Jan Koopman & Rutger Lit & André Lucas, 2017.
"Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
- Siem Jan Koopman & Rutger Lit & Andre Lucas, 2015. "Intraday Stochastic Volatility in Discrete Price Changes: the Dynamic Skellam Model," Tinbergen Institute Discussion Papers 15-076/IV/DSF94, Tinbergen Institute.
- Harvey, Andrew & Oryshchenko, Vitaliy, 2012. "Kernel density estimation for time series data," International Journal of Forecasting, Elsevier, vol. 28(1), pages 3-14.
- Harvey, A. & Liao, Y., 2019. "Dynamic Tobit models," Cambridge Working Papers in Economics 1913, Faculty of Economics, University of Cambridge.
- Janus, Paweł & Koopman, Siem Jan & Lucas, André, 2014.
"Long memory dynamics for multivariate dependence under heavy tails,"
Journal of Empirical Finance, Elsevier, vol. 29(C), pages 187-206.
- Pawel Janus & Siem Jan Koopman & André Lucas, 2011. "Long Memory Dynamics for Multivariate Dependence under Heavy Tails," Tinbergen Institute Discussion Papers 11-175/2/DSF28, Tinbergen Institute.
- Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019.
"Dynamic semiparametric models for expected shortfall (and Value-at-Risk),"
Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
- Andrew J. Patton & Johanna F. Ziegel & Rui Chen, 2017. "Dynamic Semiparametric Models for Expected Shortfall (and Value-at-Risk)," Papers 1707.05108, arXiv.org.
- Koopman, Siem Jan & Lit, Rutger, 2019.
"Forecasting football match results in national league competitions using score-driven time series models,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 797-809.
- Siem Jan (S.J.) Koopman & Rutger Lit, 2017. "Forecasting Football Match Results in National League Competitions Using Score-Driven Time Series Models," Tinbergen Institute Discussion Papers 17-062/III, Tinbergen Institute.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Harvey, A. & Palumbo, D., 2021. "Regime switching models for directional and linear observations," Cambridge Working Papers in Economics 2123, Faculty of Economics, University of Cambridge.
- McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
- Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016.
"Spillover dynamics for systemic risk measurement using spatial financial time series models,"
Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
- Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2014. "Spillover dynamics for systemic risk measurement using spatial financial time series models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100632, Verein für Socialpolitik / German Economic Association.
- Francisco Blasques & Siem Jan Koopman & Andre Lucas & Julia Schaumburg, 2014. "Spillover Dynamics for Systemic Risk Measurement using Spatial Financial Time Series Models," Tinbergen Institute Discussion Papers 14-107/III, Tinbergen Institute.
- Blasques, F. & Gorgi, P. & Koopman, S.J., 2021.
"Missing observations in observation-driven time series models,"
Journal of Econometrics, Elsevier, vol. 221(2), pages 542-568.
- Francisco (F.) Blasques & Paolo Gorgi & Siem Jan (S.J.) Koopman, 2018. "Missing Observations in Observation-Driven Time Series Models," Tinbergen Institute Discussion Papers 18-013/III, Tinbergen Institute.
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2016.
"Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
- De Lira Salvatierra, Irving & Patton, Andrew J., 2015.
"Dynamic copula models and high frequency data,"
Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
- Irving Arturo De Lira Salvatierra & Andrew J. Patton, 2013. "Dynamic Copula Models and High Frequency Data," Working Papers 13-28, Duke University, Department of Economics.
- Anne Opschoor & Pawel Janus & André Lucas & Dick Van Dijk, 2018. "New HEAVY Models for Fat-Tailed Realized Covariances and Returns," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 643-657, October.
- Michele Caivano & Andrew Harvey, 2014.
"Time-series models with an EGB2 conditional distribution,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
- M. Caivano & A. Harvey, 2013. "Time series models with an EGB2 conditional distribution," Cambridge Working Papers in Economics 1325, Faculty of Economics, University of Cambridge.
- Michele Caivano & Andrew Harvey, 2014. "Time series models with an EGB2 conditional distribution," Temi di discussione (Economic working papers) 947, Bank of Italy, Economic Research and International Relations Area.
- Leopoldo Catania, 2016. "Dynamic Adaptive Mixture Models," Papers 1603.01308, arXiv.org, revised Jan 2023.
- Harvey, A. & Hurn, S. & Thiele, S., 2019. "Modeling directional (circular) time series," Cambridge Working Papers in Economics 1971, Faculty of Economics, University of Cambridge.
- Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
- Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Harvey, Andew & Liao, Yin, 2023. "Dynamic Tobit models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 72-83.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
- Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022.
"Maximum likelihood estimation for score-driven models,"
Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
- Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Maximum Likelihood Estimation for Score-Driven Models," Tinbergen Institute Discussion Papers 14-029/III, Tinbergen Institute, revised 23 Oct 2017.
- Eric A. Beutner & Yicong Lin & Andre Lucas, 2023. "Consistency, distributional convergence, and optimality of score-driven filters," Tinbergen Institute Discussion Papers 23-051/III, Tinbergen Institute.
- Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
- Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017.
"Time-Varying Transition Probabilities for Markov Regime Switching Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
- Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Time Varying Transition Probabilities for Markov Regime Switching Models," Tinbergen Institute Discussion Papers 14-072/III, Tinbergen Institute.
- Harvey, A. & Liao, Y., 2019. "Dynamic Tobit models," Cambridge Working Papers in Economics 1913, Faculty of Economics, University of Cambridge.
- Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020.
"Risk endogeneity at the lender/investor-of-last-resort,"
Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
- Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2019. "Risk endogeneity at the lender/investor-of-last-resort," Working Paper Series 2225, European Central Bank.
- Caballero, Diego & Lucas, Andr e & Schwaab, Bernd & Zhang, Xin, 2019. "Risk endogeneity at the lender/investor-of-last-resort," Working Paper Series 382, Sveriges Riksbank (Central Bank of Sweden).
- Diego Caballero & André Lucas & Bernd Schwaab & Xin Zhang, 2019. "Risk endogeneity at the lender/investor-of-last-resort," BIS Working Papers 766, Bank for International Settlements.
- Andrew Harvey & Ryoko Ito, 2017. "Modeling time series with zero observations," Economics Papers 2017-W01, Economics Group, Nuffield College, University of Oxford.
- Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
- Michel Ferreira Cardia Haddad & Szabolcs Blazsek & Philip Arestis & Franz Fuerst & Hsia Hua Sheng, 2023. "The two-component Beta-t-QVAR-M-lev: a new forecasting model," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 379-401, December.
- Francesco Calvori & Drew Creal & Siem Jan Koopman & Andre Lucas, 2014. "Testing for Parameter Instability in Competing Modeling Frameworks," Tinbergen Institute Discussion Papers 14-010/IV/DSF71, Tinbergen Institute.
- Ouyang, Ruolan & Zhang, Xuan, 2020. "Financialization of agricultural commodities: Evidence from China," Economic Modelling, Elsevier, vol. 85(C), pages 381-389.
- Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
- Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
- Francisco (F.) Blasques & Andre (A.) Lucas & Andries van Vlodrop, 2017. "Finite Sample Optimality of Score-Driven Volatility Models," Tinbergen Institute Discussion Papers 17-111/III, Tinbergen Institute.
- Harvey, Andew & Liao, Yin, 2023. "Dynamic Tobit models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 72-83.
- Blasques, Francisco & Lucas, André & van Vlodrop, Andries C., 2021. "Finite Sample Optimality of Score-Driven Volatility Models: Some Monte Carlo Evidence," Econometrics and Statistics, Elsevier, vol. 19(C), pages 47-57.
- Alexander Georges Gretener & Matthias Neuenkirch & Dennis Umlandt, 2022.
"Dynamic Mixture Vector Autoregressions with Score-Driven Weights,"
Research Papers in Economics
2022-02, University of Trier, Department of Economics.
- Alexander Georges Gretener & Matthias Neuenkirch & Dennis Umlandt, 2022. "Dynamic Mixture Vector Autoregressions with Score-Driven Weights," Working Paper Series 2022-02, University of Trier, Research Group Quantitative Finance and Risk Analysis.
- Alexander Georges Gretener & Matthias Neuenkirch & Dennis Umlandt, 2023. "Dynamic Mixture Vector Autoregressions with Score-Driven Weights," CESifo Working Paper Series 10366, CESifo.
- Andrew Harvey & Rutger‐Jan Lange, 2018. "Modeling the Interactions between Volatility and Returns using EGARCH‐M," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 909-919, November.
- Ryoko Ito, 2016. "Asymptotic Theory for Beta-t-GARCH," Cambridge Working Papers in Economics 1607, Faculty of Economics, University of Cambridge.
More about this item
Keywords
copula; count data; directional data; generalized autoregressive conditional heteroscedasticity; generalized beta distribution of the second kind; observation-driven model; robustness;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-04-19 (Econometrics)
- NEP-ETS-2021-04-19 (Econometric Time Series)
- NEP-ORE-2021-04-19 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2133. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.