IDEAS home Printed from https://ideas.repec.org/p/not/notgts/12-02.html
   My bibliography  Save this paper

Generalized fixed-T panel unit root tests allowing for structural breaks

Author

Listed:
  • Yiannis Karavias
  • Elias Tzavalis

Abstract

In this paper we suggest panel data unit root tests which allow for structural breaks in the individual effects or linear trends of panel data models. This is done under the assumption that the disturbance terms of the panel are heterogenous and serially correlated. The limiting distributions of the suggested test statistics are derived under the assumption that the time-dimension of the panel (T) is fixed while the cross-section (N) grows large. Thus, they are appropriate for short panels, where T is small. The tests consider the cases of a known and unknown date break. For the latter case, the paper gives the analytic form of the distribution of the test statistics. Monte Carlo evidence suggests that our tests have size which is very close to its nominal level and satisfactory power in small-T panels. This is true even for cases where the degree of serial correlation is large and negative, where single time series unit root tests are found to be critically oversized.

Suggested Citation

  • Yiannis Karavias & Elias Tzavalis, 2012. "Generalized fixed-T panel unit root tests allowing for structural breaks," Discussion Papers 12/02, University of Nottingham, Granger Centre for Time Series Econometrics.
  • Handle: RePEc:not:notgts:12/02
    as

    Download full text from publisher

    File URL: https://www.nottingham.ac.uk/research/groups/grangercentre/documents/12-02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binder, Michael & Hsiao, Cheng & Pesaran, M. Hashem, 2005. "Estimation And Inference In Short Panel Vector Autoregressions With Unit Roots And Cointegration," Econometric Theory, Cambridge University Press, vol. 21(4), pages 795-837, August.
    2. De Wachter, Stefan & Tzavalis, Elias, 2005. "Monte Carlo comparison of model and moment selection and classical inference approaches to break detection in panel data models," Economics Letters, Elsevier, vol. 88(1), pages 91-96, July.
    3. Perron, Pierre & Vogelsang, Timothy J., "undated". "Level Shifts and Purchasing Power Parity," Instructional Stata datasets for econometrics levshift, Boston College Department of Economics.
    4. Jushan Bai & Josep Lluís Carrion-I-Silvestre, 2009. "Structural Changes, Common Stochastic Trends, and Unit Roots in Panel Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 471-501.
    5. Moon, Hyungsik Roger & Perron, Benoit & Phillips, Peter C.B., 2007. "Incidental trends and the power of panel unit root tests," Journal of Econometrics, Elsevier, vol. 141(2), pages 416-459, December.
    6. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    7. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    8. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    9. Han, Chirok & Phillips, Peter C. B., 2010. "Gmm Estimation For Dynamic Panels With Fixed Effects And Strong Instruments At Unity," Econometric Theory, Cambridge University Press, vol. 26(1), pages 119-151, February.
    10. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    11. Vogelsang, Timothy J & Perron, Pierre, 1998. "Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1073-1100, November.
    12. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2008. "On the exact distribution of the maximum of absolutely continuous dependent random variables," Statistics & Probability Letters, Elsevier, vol. 78(1), pages 27-35, January.
    13. Bai, Jushan, 2010. "Common breaks in means and variances for panel data," Journal of Econometrics, Elsevier, vol. 157(1), pages 78-92, July.
    14. Perron, Pierre & Vogelsang, Timothy J, 1992. "Nonstationarity and Level Shifts with an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 301-320, July.
    15. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    16. Harris, Richard D. F. & Tzavalis, Elias, 1999. "Inference for unit roots in dynamic panels where the time dimension is fixed," Journal of Econometrics, Elsevier, vol. 91(2), pages 201-226, August.
    17. Karavias, Yiannis & Tzavalis, Elias, 2014. "Testing for unit roots in short panels allowing for a structural break," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 391-407.
    18. Josep Lluís Carrion-i-Silvestre & Tomás del Barrio-Castro & Enrique López-Bazo, 2005. "Breaking the panels: An application to the GDP per capita," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 159-175, July.
    19. Jaroslava Hlouskova & Martin Wagner, 2006. "The Performance of Panel Unit Root and Stationarity Tests: Results from a Large Scale Simulation Study," Econometric Reviews, Taylor & Francis Journals, vol. 25(1), pages 85-116.
    20. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karavias, Yiannis & Tzavalis, Elias, 2013. "The Power Performance of Fixed-T Panel Unit Root Tests allowing for Structural Breaks," MPRA Paper 46012, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karavias, Yiannis & Tzavalis, Elias, 2012. "Generalized �Fixed-T Panel Unit Root Tests Allowing for Structural Breaks," MPRA Paper 43128, University Library of Munich, Germany.
    2. Karavias, Yiannis & Tzavalis, Elias, 2014. "Testing for unit roots in short panels allowing for a structural break," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 391-407.
    3. Yiannis Karavias & Elias Tzavalis, 2014. "Testing for unit roots in panels with structural changes, spatial and temporal dependence when the time dimension is finite," Discussion Papers 14/03, University of Nottingham, Granger Centre for Time Series Econometrics.
    4. Yiannis Karavias & Elias Tzavalis, 2017. "Local power of panel unit root tests allowing for structural breaks," Econometric Reviews, Taylor & Francis Journals, vol. 36(10), pages 1123-1156, November.
    5. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "Energy consumption and GDP revisited: A panel analysis of developed and developing countries," Energy Economics, Elsevier, vol. 29(6), pages 1206-1223, November.
    6. Chan, Felix & Pauwels, Laurent, 2011. "Model specification in panel data unit root tests with an unknown break," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1299-1309.
    7. Breitung, Jörg & Pesaran, Mohammad Hashem, 2005. "Unit roots and cointegration in panels," Discussion Paper Series 1: Economic Studies 2005,42, Deutsche Bundesbank.
    8. Chen, Pei-Fen & Lee, Chien-Chiang, 2007. "Is energy consumption per capita broken stationary? New evidence from regional-based panels," Energy Policy, Elsevier, vol. 35(6), pages 3526-3540, June.
    9. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2011. "Unit-root and stationarity testing with empirical application on industrial production of CEE-4 countries," MPRA Paper 29648, University Library of Munich, Germany.
    10. Yiannis Karavias & Elias Tzavalis, 2016. "Local Power of Fixed-T Panel Unit Root Tests With Serially Correlated Errors and Incidental Trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 222-239, March.
    11. Mariam Camarero & Juan Sapena & Cecilio Tamarit, 2020. "Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 87-114, June.
    12. Seung C. Ahn & Gareth M. Thomas, 2023. "Likelihood-based inference for dynamic panel data models," Empirical Economics, Springer, vol. 64(6), pages 2859-2909, June.
    13. Marriott, John & Newbold, Paul, 2000. "The strength of evidence for unit autoregressive roots and structural breaks: A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 98(1), pages 1-25, September.
    14. Dimitrios Dadakas & Christos Karpetis & Athanasios Fassas & Erotokritos Varelas, 2016. "Sectoral Differences in the Choice of the Time Horizon during Estimation of the Unconditional Stock Beta," IJFS, MDPI, vol. 4(4), pages 1-13, December.
    15. Cheng, Yuk-Shing & Li, Raymond & Woo, Chi-Keung, 2021. "Regional energy-growth nexus and energy conservation policy in China," Energy, Elsevier, vol. 217(C).
    16. Karavias, Yiannis & Tzavalis, Elias, 2013. "The Power Performance of Fixed-T Panel Unit Root Tests allowing for Structural Breaks," MPRA Paper 46012, University Library of Munich, Germany.
    17. António Afonso & João Jalles, 2014. "A longer-run perspective on fiscal sustainability," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(4), pages 821-847, November.
    18. Travaglini, Guido, 2007. "The U.S. Dynamic Taylor Rule With Multiple Breaks, 1984-2001," MPRA Paper 3419, University Library of Munich, Germany, revised 15 Jun 2007.
    19. Marcela Sabaté, 2009. "Vertical Specialization and Nonstationarities in International Trade Series," The Institute for International Integration Studies Discussion Paper Series iiisdp309, IIIS.
    20. De Wachter, Stefan & Tzavalis, Elias, 2012. "Detection of structural breaks in linear dynamic panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3020-3034.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:not:notgts:12/02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsnotuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.