IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i520p1636-1647.html
   My bibliography  Save this article

The Iterated Auxiliary Particle Filter

Author

Listed:
  • Pieralberto Guarniero
  • Adam M. Johansen
  • Anthony Lee

Abstract

We present an offline, iterated particle filter to facilitate statistical inference in general state space hidden Markov models. Given a model and a sequence of observations, the associated marginal likelihood L is central to likelihood-based inference for unknown statistical parameters. We define a class of “twisted” models: each member is specified by a sequence of positive functions ψ${\bm \psi }$ and has an associated ψ${\bm \psi }$-auxiliary particle filter that provides unbiased estimates of L. We identify a sequence ψ*${\bm \psi }^{*}$ that is optimal in the sense that the ψ*${\bm \psi }^{*}$-auxiliary particle filter’s estimate of L has zero variance. In practical applications, ψ*${\bm \psi }^{*}$ is unknown so the ψ*${\bm \psi }^{*}$-auxiliary particle filter cannot straightforwardly be implemented. We use an iterative scheme to approximate ψ*${\bm \psi }^{*}$ and demonstrate empirically that the resulting iterated auxiliary particle filter significantly outperforms the bootstrap particle filter in challenging settings. Applications include parameter estimation using a particle Markov chain Monte Carlo algorithm.

Suggested Citation

  • Pieralberto Guarniero & Adam M. Johansen & Anthony Lee, 2017. "The Iterated Auxiliary Particle Filter," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1636-1647, October.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:520:p:1636-1647
    DOI: 10.1080/01621459.2016.1222291
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1222291
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1222291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Leung & Catherine S. Forbes & Gael M Martin & Brendan McCabe, 2019. "Forecasting Observables with Particle Filters: Any Filter Will Do!," Monash Econometrics and Business Statistics Working Papers 22/19, Monash University, Department of Econometrics and Business Statistics.
    2. Joshua Chan & Arnaud Doucet & Roberto Leon-Gonzalez & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," GRIPS Discussion Papers 18-12, National Graduate Institute for Policy Studies.
    3. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
    4. Andras Fulop & Jeremy Heng & Junye Li, 2022. "Efficient Likelihood-based Estimation via Annealing for Dynamic Structural Macrofinance Models," Papers 2201.01094, arXiv.org.
    5. Rutger Jan Lange, 2020. "Bellman filtering for state-space models," Tinbergen Institute Discussion Papers 20-052/III, Tinbergen Institute, revised 19 May 2021.
    6. Patrick Leung & Catherine S. Forbes & Gael M. Martin & Brendan McCabe, 2016. "Data-driven particle Filters for particle Markov Chain Monte Carlo," Monash Econometrics and Business Statistics Working Papers 17/16, Monash University, Department of Econometrics and Business Statistics.
    7. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:520:p:1636-1647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.