IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/7484.html
   My bibliography  Save this paper

Endogenous R&D Spillovers and Industrial Research Productivity

Author

Listed:
  • James D. Adams

Abstract

This paper explores the implications of a simple model of learning and innovation by firms. In this model R&D spillovers are partly determined by firms, rather than by the given economic environment. According to this approach the full effect of spillovers on research productivity of firms exceeds the structural effect because it includes an active learning' response of firms to new information. Furthermore, effective spillovers grow faster or slower than potential spillovers, depending on the returns to scale of production processes for learning and invention. The empirical work is based on a sample of R&D laboratories in the chemicals, machinery, electrical equipment, and transportation equipment industries. I estimate negative binomial regressions for the number of patents as a function of academic and industrial spillover pools, learning expenditures and internal research expenditures. The findings are consistent with the view that learning expenditures transmit the effect of spillovers. I also perform tobit, ordered probit and grouped probit estimation of learning effort. I find that learning effort increases in response to industrial and academic R&D spillovers. Lastly, academic spillovers appear to have a more pervasive effect on R&D than do industrial spillovers. Overall these results suggest a sequence of events underlying learning and innovation, with learning responding to opportunities, innovation responding to learning and own R&D, and a stream of innovations leading to the accumulation of new product introductions that ultimately are reflected in the value of enterprise.

Suggested Citation

  • James D. Adams, 2000. "Endogenous R&D Spillovers and Industrial Research Productivity," NBER Working Papers 7484, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:7484
    Note: PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w7484.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gary S. Becker & Kevin M. Murphy, 1994. "The Division of Labor, Coordination Costs, and Knowledge," NBER Chapters, in: Human Capital: A Theoretical and Empirical Analysis with Special Reference to Education, Third Edition, pages 299-322, National Bureau of Economic Research, Inc.
    2. Edwin Mansfield & John Rapoport & Anthony Romeo & Samuel Wagner & George Beardsley, 1977. "Social and Private Rates of Return from Industrial Innovations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 91(2), pages 221-240.
    3. Hicks, Diana, 1995. "Published Papers, Tacit Competencies and Corporate Management of the Public/Private Character of Knowledge," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 4(2), pages 401-424.
    4. Tor Jakob Klette, 1996. "R&D, Scope Economies, and Plant Performance," RAND Journal of Economics, The RAND Corporation, vol. 27(3), pages 502-522, Autumn.
    5. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    6. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 17-45, National Bureau of Economic Research, Inc.
    7. Adams, James D, 1990. "Fundamental Stocks of Knowledge and Productivity Growth," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 673-702, August.
    8. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    9. Martin L. Weitzman, 1998. "Recombinant Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(2), pages 331-360.
    10. repec:bla:jindec:v:46:y:1998:i:2:p:207-33 is not listed on IDEAS
    11. Zucker, Lynne G & Darby, Michael R & Brewer, Marilynn B, 1998. "Intellectual Human Capital and the Birth of U.S. Biotechnology Enterprises," American Economic Review, American Economic Association, vol. 88(1), pages 290-306, March.
    12. Mansfield, Edwin, 1991. "Academic research and industrial innovation," Research Policy, Elsevier, vol. 20(1), pages 1-12, February.
    13. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    14. Audretsch, David B & Stephan, Paula E, 1996. "Company-Scientist Locational Links: The Case of Biotechnology," American Economic Review, American Economic Association, vol. 86(3), pages 641-652, June.
    15. Lee Branstetter & Mariko Sakakibara, 1998. "Japanese Research Consortia: A Microeconometric Analysis of Industrial Policy," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 207-233, June.
    16. Dixit, Avinash K., 1990. "Optimization in Economic Theory," OUP Catalogue, Oxford University Press, edition 2, number 9780198772101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gray, Richard S. & Malla, Stavroula & Tran, Kien C., 2003. "An Empirical Analysis Of Public And Private Spillovers Within The Canola Biotech Industry," 2003 Annual meeting, July 27-30, Montreal, Canada 22137, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Jim Y. Jin & Michael Troege, 2006. "R&D Competition And Endogenous Spillovers," Manchester School, University of Manchester, vol. 74(1), pages 40-51, January.
    3. Gray, Richard S. & Malla, Stavroula & Tran, Kien C., 2005. "Pecuniary, Non-Pecuniary, and Downstream Research Spillovers: The Case of Canola," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24776, European Association of Agricultural Economists.
    4. Liu, Ting-Kun & Chen, Jong-Rong & Huang, Cliff C.J. & Yang, Chih-Hai, 2013. "E-commerce, R&D, and productivity: Firm-level evidence from Taiwan," Information Economics and Policy, Elsevier, vol. 25(4), pages 272-283.
    5. Fu, Xiaolan, 2012. "How does openness affect the importance of incentives for innovation?," Research Policy, Elsevier, vol. 41(3), pages 512-523.
    6. Gamal Atallah, 2003. "Information sharing and the stability of cooperation in research joint ventures," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 12(6), pages 531-554.
    7. Gamal Atallah, 2004. "The Protection of Innovations," CIRANO Working Papers 2004s-02, CIRANO.
    8. James D. Adams, 2002. "Comparative localization of academic and industrial spillovers," Journal of Economic Geography, Oxford University Press, vol. 2(3), pages 253-278, July.
    9. David, Paul A. & Hall, Bronwyn H. & Toole, Andrew A., 1999. "Is Public R&D a Complement or Substitute for Private R&D? A Review of the Econometric Evidence," Department of Economics, Working Paper Series qt1sz6g8bv, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    10. David, Paul A. & Hall, Bronwyn H. & Toole, Andrew A., 2000. "Is public R&D a complement or substitute for private R&D? A review of the econometric evidence," Research Policy, Elsevier, vol. 29(4-5), pages 497-529, April.
    11. Tishler, Asher & Milstein, Irena, 2009. "R&D wars and the effects of innovation on the success and survivability of firms in oligopoly markets," International Journal of Industrial Organization, Elsevier, vol. 27(4), pages 519-531, July.
    12. Arora, Ashish & Ceccagnoli, Marco & Cohen, Wesley M., 2008. "R&D and the patent premium," International Journal of Industrial Organization, Elsevier, vol. 26(5), pages 1153-1179, September.
    13. Jong-Rong Chen & Chih-Hai Yang, 2005. "Technological knowledge, spillover and productivity: evidence from Taiwanese firm level panel data," Applied Economics, Taylor & Francis Journals, vol. 37(20), pages 2361-2371.
    14. Gray, Richard & Malla, Stavroula, 2007. "Research Spillovers What They Are and Why They Matter for Policy," CAIRN Policy Briefs 273075, Canadian Agricultural Innovation and Regulation Network (CAIRN).
    15. Adams, James D & Chiang, Eric P & Starkey, Katara, 2001. "Industry-University Cooperative Research Centers," The Journal of Technology Transfer, Springer, vol. 26(1-2), pages 73-86, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan, Paula E., 2010. "The Economics of Science," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 217-273, Elsevier.
    2. Rothaermel, Frank T. & Thursby, Marie, 2007. "The nanotech versus the biotech revolution: Sources of productivity in incumbent firm research," Research Policy, Elsevier, vol. 36(6), pages 832-849, July.
    3. Zoltán J. Ács & Pontus Braunerhjelm & David B. Audretsch & Bo Carlsson, 2015. "The knowledge spillover theory of entrepreneurship," Chapters, in: Global Entrepreneurship, Institutions and Incentives, chapter 7, pages 129-144, Edward Elgar Publishing.
    4. Klette, Tor Jakob & Moen, Jarle & Griliches, Zvi, 2000. "Do subsidies to commercial R&D reduce market failures? Microeconometric evaluation studies1," Research Policy, Elsevier, vol. 29(4-5), pages 471-495, April.
    5. Dominique Guellec & Bruno Van Pottelsberghe de la Potterie, 2004. "From R&D to Productivity Growth: Do the Institutional Settings and the Source of Funds of R&D Matter?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 353-378, July.
    6. James D. Adams & J. Roger Clemmons & Paula E. Stephan, 2010. "Standing on Academic Shoulders: Measuring Scientific Influence in Universities," NBER Chapters, in: Contributions in Memory of Zvi Griliches, pages 61-90, National Bureau of Economic Research, Inc.
    7. James Adams, 2006. "Learning, internal research, and spillovers," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(1), pages 5-36.
    8. Pierre Azoulay & Waverly Ding & Toby Stuart, 2006. "The Impact of Academic Patenting on the Rate, Quality, and Direction of (Public) Research Output," NBER Working Papers 11917, National Bureau of Economic Research, Inc.
    9. James D. Adams & J. Roger Clemmons, 2008. "The Origins of Industrial Scientific Discoveries," NBER Working Papers 13823, National Bureau of Economic Research, Inc.
    10. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    11. Teodora Diana Corsatea, 2016. "Localised knowledge, local policies and regional innovation activity for renewable energy technologies: Evidence from Italy," Papers in Regional Science, Wiley Blackwell, vol. 95(3), pages 443-466, August.
    12. Teodora Corsatea & Hubert Jayet, 2014. "Spatial patterns of innovation activities in France: market’s role versus public research efforts," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(3), pages 739-762, May.
    13. Wipo, 2011. "World Intellectual Property Report 2011- The Changing Face of Innovation," WIPO Economics & Statistics Series, World Intellectual Property Organization - Economics and Statistics Division, number 2011:944, April.
    14. Cassiman, Bruno & Veugelers, Reinhilde & Zuniga, Pluvia, 2009. "Diversity of science linkages and innovation performance: some empirical evidence from Flemish firms," Economics Discussion Papers 2009-30, Kiel Institute for the World Economy (IfW Kiel).
    15. Lee Branstetter & Kwon Hyeog Ug, 2004. "The Restructuring Of Japanese Research And Development: The Increasing Impact Of Science On Japanese R&D," Discussion papers 04021, Research Institute of Economy, Trade and Industry (RIETI).
    16. Gersbach, Hans & Sorger, Gerhard & Amon, Christian, 2018. "Hierarchical growth: Basic and applied research," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 434-459.
    17. Antonelli, Cristiano, 2013. "Globalization Localized Technological Change and the Knowledge Economy," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201325, University of Turin.
    18. Kokko, Ari & Tingvall, Patrik Gustavsson & Videnord, Josefin, 2015. "The growth effects of R&D spending in the EU: A meta-analysis," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-26.
    19. Mahmut Yaşar & Catherine Paul, 2012. "Firm performance and knowledge spillovers from academic, industrial and foreign linkages: the case of China," Journal of Productivity Analysis, Springer, vol. 38(3), pages 237-253, December.
    20. Becker Wolfgang & Peters Jürgen, 2005. "Innovation Effects of Science-Related Technological Opportunities / Innovationseffekte von technologischen Möglichkeiten aus dem Wissenschaftsbereich: Theoretical Considerations and Empirical Findings," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(2), pages 130-150, April.

    More about this item

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:7484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.