IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/30247.html
   My bibliography  Save this paper

A New Way of Forecasting Recessions

Author

Listed:
  • Edward E. Leamer

Abstract

This paper proposes a new way of displaying and analyzing macroeconomic time series to form recession forecasts. The proposed data displays contain the last three years of each expansion. These allow observers to see for themselves what is different about the last year before recession. Based on a statistical model, the most recent data are then probabilistically inserted into these images where the recent data are most similar to the historical data. This amounts to a forecast. The traditional probit model used to forecast recessions inappropriately treats every observation as a separate experiment. This new method deals with these intra-correlation issues. The one variable that is causing a recession alarm is inflation. The unemployment rate is also alarming if the covid-19 data are omitted. The slope of the yield curve, the three-month Treasury yield, and housing starts are all two or three years from the end of the expansion. A probit model that conducts a “horse race” among these five variables reveals it is the bond market variables that best predict recessions. This leaves the Fed under control, but the 1970s data suggests it takes a recession to combat high inflation.

Suggested Citation

  • Edward E. Leamer, 2022. "A New Way of Forecasting Recessions," NBER Working Papers 30247, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:30247
    Note: EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w30247.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward E. Leamer, 2015. "Housing Really Is the Business Cycle: What Survives the Lessons of 2008–09?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(S1), pages 43-50, March.
    2. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    2. Emanuel Kohlscheen & Aaron Mehrotra & Dubravko Mihaljek, 2020. "Residential Investment and Economic Activity: Evidence from the Past Five Decades," International Journal of Central Banking, International Journal of Central Banking, vol. 16(6), pages 287-329, December.
    3. Christiansen, Charlotte & Eriksen, Jonas N. & Møller, Stig V., 2019. "Negative house price co-movements and US recessions," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 382-394.
    4. Edward E. Leamer, 2024. "Data patterns that reliably precede US recessions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2522-2539, November.
    5. Ujjal Chatterjee, 2023. "Predicting economic growth: evidence from real-estate loans securitization," SN Business & Economics, Springer, vol. 3(3), pages 1-20, March.
    6. Chatterjee, Ujjal K. & Zirgulis, Aras & Hüttinger, Maik & French, Joseph J., 2024. "Reassessing the inversion of the Treasury yield curve as a sign of U.S. recessions: Insights from the housing and credit markets," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    7. Evans, Charles L. & Marshall, David A., 2007. "Economic determinants of the nominal treasury yield curve," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1986-2003, October.
    8. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
    9. Johannes A. Skjeltorp & Bernt Arne Ødegaard, 2009. "The information content of market liquidity: An empirical analysis of liquidity at the Oslo Stock Exchange?," Working Paper 2009/26, Norges Bank.
    10. Arturo Estrella & Anthony P. Rodrigues, 1998. "Consistent covariance matrix estimation in probit models with autocorrelated errors," Staff Reports 39, Federal Reserve Bank of New York.
    11. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    12. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
    13. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    14. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    15. Anna Cieslak & Pavol Povala, 2016. "Information in the Term Structure of Yield Curve Volatility," Journal of Finance, American Finance Association, vol. 71(3), pages 1393-1436, June.
    16. Todd J. BARRY, 2020. "Causes of the curve: Assessing risk in public and private financial economics," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(623), S), pages 109-130, Summer.
    17. Van Landschoot, Astrid, 2004. "Determinants of euro term structure of credit spreads," Working Paper Series 397, European Central Bank.
    18. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    19. Franck Sédillot, 2001. "La pente des taux contient-elle de l'information sur l'activité économique future ?," Economie & Prévision, La Documentation Française, vol. 147(1), pages 141-157.
    20. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.

    More about this item

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C0 - Mathematical and Quantitative Methods - - General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E0 - Macroeconomics and Monetary Economics - - General
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:30247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.