IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/15423.html
   My bibliography  Save this paper

Where Does Energy R&D Come From? Examining Crowding Out from Environmentally-Friendly R&D

Author

Listed:
  • David Popp
  • Richard G. Newell

Abstract

Recent efforts to endogenize technological change in climate policy models demonstrate the importance of accounting for the opportunity cost of climate R&D investments. Because the social returns to R&D investments are typically higher than the social returns to other types of investment, any new climate mitigation R&D that comes at the expense of other R&D investment may dampen the overall gains from induced technological change. Unfortunately, there has been little empirical work to guide modelers as to the potential magnitude of such crowding out effects. This paper considers both the private and social opportunity costs of climate R&D. Addressing private costs, we ask whether an increase in climate R&D represents new R&D spending, or whether some (or all) of the additional climate R&D comes at the expense of other R&D. Addressing social costs, we use patent citations to compare the social value of alternative energy research to other types of R&D that may be crowded out. Beginning at the industry level, we find some evidence of crowding out in sectors active in energy R&D, but not in sectors that do not perform energy R&D. This suggests that funds for energy R&D do not come from other sectors, but may come from a redistribution of research funds in sectors that are likely to perform energy R&D. Given this, we proceed with a detailed look at climate R&D in two sectors - alternative energy and automotive manufacturing. Linking patent data and financial data by firm, we ask whether an increase in alternative energy patents leads to a decrease in other types of patenting activity. We find crowding out for alternative energy firms, but no evidence of crowding out for automotive firms. Finally, we use patent citation data to compare the social value of alternative energy patents to other patents by these firms. Alternative energy patents are cited more frequently, and by a wider range of other technologies, than other patents by these firms, suggesting that their social value is higher.

Suggested Citation

  • David Popp & Richard G. Newell, 2009. "Where Does Energy R&D Come From? Examining Crowding Out from Environmentally-Friendly R&D," NBER Working Papers 15423, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:15423
    Note: EEE PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w15423.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bronwyn H. Hall & Jacques Mairesse & Benoit Mulkay, 1998. "Does cash flow cause investment and R&D: an exploration using panel data for French, Japanes and United States scientific firms," IFS Working Papers W98/11, Institute for Fiscal Studies.
    2. Edwin Mansfield & John Rapoport & Anthony Romeo & Samuel Wagner & George Beardsley, 1977. "Social and Private Rates of Return from Industrial Innovations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 91(2), pages 221-240.
    3. repec:fth:harver:1473 is not listed on IDEAS
    4. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2007. "Enhanced routines for instrumental variables/GMM estimation and testing," CERT Discussion Papers 0706, Centre for Economic Reform and Transformation, Heriot Watt University.
    5. repec:adr:anecst:y:1998:i:49-50:p:16 is not listed on IDEAS
    6. Nemet, Gregory F. & Kammen, Daniel M., 2007. "U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion," Energy Policy, Elsevier, vol. 35(1), pages 746-755, January.
    7. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    8. Charles I. Jones & John C. Williams, 1998. "Measuring the Social Return to R&D," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1119-1135.
    9. Eduardo Morales-Ramos, 2002. "Defence R&D expenditure: The crowding-out hypothesis," Defence and Peace Economics, Taylor & Francis Journals, vol. 13(5), pages 365-383.
    10. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    11. Bronwyn Hall, 2004. "The financing of research and development," Chapters, in: Anthony Bartzokas & Sunil Mani (ed.), Financial Systems, Corporate Investment in Innovation, and Venture Capital, chapter 2, Edward Elgar Publishing.
    12. Dietmar Harhoff, 1998. "Are there Financing Constraints for R&D and Investment in German Manufacturing Firms," Annals of Economics and Statistics, GENES, issue 49-50, pages 421-456.
    13. Thomas Roediger‐Schluga, 2003. "Some Micro‐Evidence on the “Porter Hypothesis” from Austrian VOC Emission Standards," Growth and Change, Wiley Blackwell, vol. 34(3), pages 359-379, August.
    14. Pakes, Ariel, 1985. "On Patents, R&D, and the Stock Market Rate of Return," Journal of Political Economy, University of Chicago Press, vol. 93(2), pages 390-409, April.
    15. de Coninck, Heleen & Fischer, Carolyn & Newell, Richard G. & Ueno, Takahiro, 2008. "International technology-oriented agreements to address climate change," Energy Policy, Elsevier, vol. 36(1), pages 335-356, January.
    16. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    17. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    18. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    19. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    20. Lichtenberg, Frank R., 1987. "Changing market opportunities and the structure of R & D investment : The case of energy," Energy Economics, Elsevier, vol. 9(3), pages 154-158, July.
    21. Spiros Bougheas & Holger Görg & Eric Strobl, 2003. "Is R & D Financially Constrained? Theory and Evidence from Irish Manufacturing," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 22(2), pages 159-174, March.
    22. repec:adr:anecst:y:1998:i:49-50:p:17 is not listed on IDEAS
    23. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    24. Audretsch,David B. & Thurik,Roy (ed.), 1999. "Innovation, Industry Evolution and Employment," Cambridge Books, Cambridge University Press, number 9780521641661, January.
    25. Albert N. Link, 1982. "Productivity Growth, Environmental Regulations and the Composition of R&D," Bell Journal of Economics, The RAND Corporation, vol. 13(2), pages 548-554, Autumn.
    26. Gerlagh, Reyer, 2008. "A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings," Energy Economics, Elsevier, vol. 30(2), pages 425-448, March.
    27. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harrington, Donna Ramirez, 2012. "Two-stage adoption of different types of pollution prevention (P2) activities," Resource and Energy Economics, Elsevier, vol. 34(3), pages 349-373.
    2. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    3. Oikawa, Koki & Managi, Shunsuke, 2015. "R&D in clean technology: A project choice model with learning," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 175-195.
    4. Richard S.J. Tol & Yi Yiang, "undated". "Does green innovation crowd out other innovation of firms? - based on the extended CDM model and unconditional quantile regressions," Working Paper Series 0124, Department of Economics, University of Sussex Business School.
    5. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2014. "The optimal time path of clean energy R&D policy when patents have finite lifetime," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 2-19.
    6. Buscemi, Antonino & Yallwe, Alem Hagos, 2011. "It is time to re-think on environment, energy and economics (E3)," MPRA Paper 30998, University Library of Munich, Germany.
    7. Guoqun Ma & Danyang Lv & Yuxi Luo & Tuanbiao Jiang, 2022. "Environmental Regulation, Urban-Rural Income Gap and Agricultural Green Total Factor Productivity," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    8. Marin, Giovanni, 2014. "Do eco-innovations harm productivity growth through crowding out? Results of an extended CDM model for Italy," Research Policy, Elsevier, vol. 43(2), pages 301-317.
    9. Sierzchula, William & Nemet, Gregory, 2015. "Using patents and prototypes for preliminary evaluation of technology-forcing policies: Lessons from California's Zero Emission Vehicle regulations," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 213-224.
    10. Giacomo Marangoni & Gauthier De Maere & Valentina Bosetti, 2017. "Optimal Clean Energy R&D Investments Under Uncertainty," MITP: Mitigation, Innovation and Transformation Pathways 256056, Fondazione Eni Enrico Mattei (FEEM).
    11. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    12. Venugopalan, Subhashini & Rai, Varun, 2015. "Topic based classification and pattern identification in patents," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 236-250.
    13. Carlo Carraro & Enrica De Cian & Massimo Tavoni, 2012. "Human Capital, Innovation, and Climate Policy: An Integrated Assessment," Working Papers 2012.18, Fondazione Eni Enrico Mattei.
    14. repec:ial:wpaper:3 is not listed on IDEAS
    15. Kristina M. Lybecker, 2014. "Innovation and Technology Dissemination in Clean Technology Markets and The Developing World: The Role of Trade, Intellectual Property Rights, and Uncertainty," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 10(2), pages 7-38.
    16. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2016. "Diversity in solar photovoltaic energy: Implications for innovation and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 331-340.
    17. Scrieciu, S. Şerban & Barker, Terry & Ackerman, Frank, 2013. "Pushing the boundaries of climate economics: critical issues to consider in climate policy analysis," Ecological Economics, Elsevier, vol. 85(C), pages 155-165.
    18. Leo Wangler, 2010. "Renewables and Innovation - Empirical Assessment and Theoretical Considerations," Jena Economics Research Papers 2010-002, Friedrich-Schiller-University Jena.
    19. Timothy Swanson & Zacharias Ziegelhoefer, 2011. "Economic Frameworks for thinking about Growth, Sustainability and the role of State Intervention: Paths to Green Economies?," CIES Research Paper series 11-2012, Centre for International Environmental Studies, The Graduate Institute.
    20. Bjørner, Thomas Bue & Mackenhauer, Janne, 2013. "Spillover from private energy research," Resource and Energy Economics, Elsevier, vol. 35(2), pages 171-190.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Popp, David & Newell, Richard, 2012. "Where does energy R&D come from? Examining crowding out from energy R&D," Energy Economics, Elsevier, vol. 34(4), pages 980-991.
    2. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    3. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    4. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    5. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    6. David Popp, 2004. "R&D Subsidies and Climate Policy: Is There a "Free Lunch"?," NBER Working Papers 10880, National Bureau of Economic Research, Inc.
    7. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    8. Hall, Bronwyn H. & Lerner, Josh, 2010. "The Financing of R&D and Innovation," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 609-639, Elsevier.
    9. Hanna Hottenrott & Bettina Peters, 2012. "Innovative Capability and Financing Constraints for Innovation: More Money, More Innovation?," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1126-1142, November.
    10. Leibowicz, Benjamin D., 2018. "Welfare improvement windows for innovation policy," Research Policy, Elsevier, vol. 47(2), pages 390-398.
    11. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    12. Guariglia, Alessandra & Liu, Pei, 2014. "To what extent do financing constraints affect Chinese firms' innovation activities?," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 223-240.
    13. David Popp, 2019. "Environmental Policy and Innovation: A Decade of Research," NBER Working Papers 25631, National Bureau of Economic Research, Inc.
    14. David Popp, 2003. "Lessons from Patents: Using Patents To Measure Technological Change in Environmental Models," NBER Working Papers 9978, National Bureau of Economic Research, Inc.
    15. Declan Conway & Antoine Dechezleprêtre & Ivan Haščič & Nick Johnstone, 2015. "Invention and Diffusion of Water Supply and Water Efficiency Technologies: Insights from a Global Patent Dataset," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-34, December.
    16. Burak Dindaroglu, 2010. "Intra-Industry Knowledge Spillovers and Scientific Labor Mobility," Discussion Papers 10-01, University at Albany, SUNY, Department of Economics.
    17. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
    18. Barbieri, Nicolò, 2016. "Fuel prices and the invention crowding out effect: Releasing the automotive industry from its dependence on fossil fuel," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 222-234.
    19. Nicolò Barbieri, 2015. "Environmental policy and invention crowding out. Unlocking the automotive industry from fossil fuel path dependence," SEEDS Working Papers 0615, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Mar 2015.
    20. Luís M A Bettencourt & Jessika E Trancik & Jasleen Kaur, 2013. "Determinants of the Pace of Global Innovation in Energy Technologies," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-6, October.

    More about this item

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:15423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.