IDEAS home Printed from https://ideas.repec.org/p/nbp/nbpmis/43.html
   My bibliography  Save this paper

Can a simple DSGE model outperform Professional Forecasters?

Author

Abstract

DSGE models have recently become one of the most frequently used tools in policy analysis. Nevertheless, their forecasting proprieties are still unexplored. In this article we address this problem by examining the quality of forecasts from a small size DSGE model, a trivariate VAR model and the Philadelphia Fed Survey of Professional Forecasters. The forecast performance of these methods is analysed for the key U.S. economic variables: the three month Treasury bill yield, the GDP growth rate and the GDP price index inflation. We evaluate the ex post forecast errors on the basis of the data from the period of 1994–2006. We apply the Philadelphia Fed “Real-Time Data Set for Macroeconomists,” described by Croushore and Stark (2001a), to ensure that the information available to the SPF was exactly the same as the data used to estimate the DSGE and VAR models. Overall, the results are mixed. It appears that when comparing the root mean squared errors for some forecast horizons the DSGE model seems to outperform the SPF in forecasting the GDP growth rate. However, this characteristic turned out to be not statistically significant. In principle most forecasts of the GDP price index inflation and the short term interest rate by the SPF are significantly better than those from the DSGE model. The forecast quality of the VAR model turned out to be the worst one.

Suggested Citation

  • Michal Rubaszek & Pawel Skrzypczynski, 2007. "Can a simple DSGE model outperform Professional Forecasters?," NBP Working Papers 43, Narodowy Bank Polski.
  • Handle: RePEc:nbp:nbpmis:43
    as

    Download full text from publisher

    File URL: https://static.nbp.pl/publikacje/materialy-i-studia/43_en.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dixit, Avinash K & Stiglitz, Joseph E, 1977. "Monopolistic Competition and Optimum Product Diversity," American Economic Review, American Economic Association, vol. 67(3), pages 297-308, June.
    2. Marco Del Negro & Frank Schorfheide & Frank Smets & Raf Wouters, 2004. "On the fit and forecasting performance of New Keynesian models," FRB Atlanta Working Paper 2004-37, Federal Reserve Bank of Atlanta.
    3. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    4. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    5. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    6. Athanasios Orphanides & John C. Williams, 2002. "Robust Monetary Policy Rules with Unknown Natural Rates," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 33(2), pages 63-146.
    7. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    8. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    9. Croushore Dean, 2010. "An Evaluation of Inflation Forecasts from Surveys Using Real-Time Data," The B.E. Journal of Macroeconomics, De Gruyter, vol. 10(1), pages 1-32, May.
    10. Rudebusch, Glenn D., 2002. "Term structure evidence on interest rate smoothing and monetary policy inertia," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1161-1187, September.
    11. Obstfeld, Maurice & Rogoff, Kenneth, 1995. "Exchange Rate Dynamics Redux," Journal of Political Economy, University of Chicago Press, vol. 103(3), pages 624-660, June.
    12. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    13. Rochelle M. Edge & Michael T. Kiley & Jean-Philippe Laforte, 2010. "A comparison of forecast performance between Federal Reserve staff forecasts, simple reduced-form models, and a DSGE model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 720-754.
    14. Frank Smets & Raf Wouters, 2004. "Forecasting with a Bayesian DSGE Model: An Application to the Euro Area," Journal of Common Market Studies, Wiley Blackwell, vol. 42(4), pages 841-867, November.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Peter N. Ireland, 2004. "Technology Shocks in the New Keynesian Model," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 923-936, November.
    17. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    18. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    19. Todd E. Clark & Michael W. McCracken, 2007. "Forecasting with small macroeconomic VARs in the presence of instabilities," Finance and Economics Discussion Series 2007-41, Board of Governors of the Federal Reserve System (U.S.).
    20. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    21. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    22. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.
    2. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    3. Ulrich Gunter, 2019. "Estimating and forecasting with a two-country DSGE model of the Euro area and the USA: the merits of diverging interest-rate rules," Empirical Economics, Springer, vol. 56(4), pages 1283-1323, April.
    4. Marcin Kolasa & Michał Rubaszek & Paweł Skrzypczyński, 2012. "Putting the New Keynesian DSGE Model to the Real‐Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
    5. Guangling 'Dave' Liu & Rangan Gupta & Eric Schaling, 2009. "A New-Keynesian DSGE model for forecasting the South African economy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 387-404.
    6. Ali Dib & Mohamed Gammoudi & Kevin Moran, 2008. "Forecasting Canadian time series with the New Keynesian model," Canadian Journal of Economics, Canadian Economics Association, vol. 41(1), pages 138-165, February.
    7. Karamé, Frédéric & Patureau, Lise & Sopraseuth, Thepthida, 2008. "Limited participation and exchange rate dynamics: Does theory meet the data?," Journal of Economic Dynamics and Control, Elsevier, vol. 32(4), pages 1041-1087, April.
    8. Fujiwara, Ippei & Hara, Naoko & Hirose, Yasuo & Teranishi, Yuki, 2005. "The Japanese Economic Model (JEM)," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 23(2), pages 61-142, May.
    9. Peter N. Ireland, 2011. "A New Keynesian Perspective on the Great Recession," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(1), pages 31-54, February.
    10. Vergara-Pérez, Sami D. & Venegas-Martínez, Francisco, 2022. "Estimación bayesiana de un modelo dinámico estocástico nuevo keynesiano de equilibrio general con reglas de política fiscal y monetaria para México [Bayesian estimation of a new Keynesian stochasti," MPRA Paper 115458, University Library of Munich, Germany.
    11. David Alan Peel & Pantelis Promponas, 2016. "Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K," Working Papers 144439514, Lancaster University Management School, Economics Department.
    12. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    13. Schorfheide, Frank & Sill, Keith & Kryshko, Maxym, 2010. "DSGE model-based forecasting of non-modelled variables," International Journal of Forecasting, Elsevier, vol. 26(2), pages 348-373, April.
    14. Sánchez, Marcelo, 2008. "Oil shocks and endogenous markups: results from an estimated euro area DSGE model," Working Paper Series 860, European Central Bank.
    15. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    16. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    17. Martinez-Martin Jaime & Morris Richard & Onorante Luca & Piersanti Fabio Massimo, 2024. "Merging Structural and Reduced-Form Models for Forecasting," The B.E. Journal of Macroeconomics, De Gruyter, vol. 24(1), pages 399-437, January.
    18. Lim, G.C. & McNelis, Paul D., 2008. "Computational Macroeconomics for the Open Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262123061, December.
    19. Andreas Schabert, 2005. "Money Supply and the Implementation of Interest Rate Targets," Tinbergen Institute Discussion Papers 05-059/2, Tinbergen Institute.
    20. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.

    More about this item

    Keywords

    forecasting; real-time data; Survey of Professional Forecasters; DSGE; VAR;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E12 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Keynes; Keynesian; Post-Keynesian; Modern Monetary Theory
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbp:nbpmis:43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jakub Growiec (email available below). General contact details of provider: https://edirc.repec.org/data/nbpgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.