IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2015-20.html
   My bibliography  Save this paper

Testing for a Structural Break in Dynamic Panel Data Models with Common Factors

Author

Listed:
  • Huanjun Zhu
  • Vasilis Sarafidis
  • Mervyn Silvapulle
  • Jiti Gao

Abstract

This paper develops a method for testing for the presence of a single structural break in panel data models with unobserved heterogeneity represented by a factor error structure. The common factor approach is an appealing way to capture the effect of unobserved variables, such as skills and innate ability in studies of returns to education, common shocks and cross-sectional dependence in models of economic growth, law enforcement acts and public attitudes towards crime in statistical modelling of criminal behaviour. Ignoring these variables may result in inconsistent parameter estimates and invalid inferences. We focus on the case where the time frequency of the data may be yearly and thereby the number of time series observations is small, even if the sample covers a rather long period of time. We develop a Distance type statistic based on a Method of Moments estimator that allows for unobserved common factors. Existing structural break tests proposed in the literature are not valid under these circumstances. The asymptotic properties of the test statistic are established for both known and unknown breakpoints. In our simulation study, the method performed well, both in terms of size and power, as well as in terms of successfully locating the time at which the break occurred. The method is illustrated using data from a large sample of banking institutions, providing empirical evidence on the well-known Gibrat's `Law'.

Suggested Citation

  • Huanjun Zhu & Vasilis Sarafidis & Mervyn Silvapulle & Jiti Gao, 2015. "Testing for a Structural Break in Dynamic Panel Data Models with Common Factors," Monash Econometrics and Business Statistics Working Papers 20/15, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2015-20
    as

    Download full text from publisher

    File URL: http://business.monash.edu/__data/assets/pdf_file/0006/346209/wp20-15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    2. John Cawley & Karen Conneely & James Heckman & Edward Vytlacil, 1996. "Cognitive Ability, Wages, and Meritocracy," NBER Working Papers 5645, National Bureau of Economic Research, Inc.
    3. De Wachter, Stefan & Tzavalis, Elias, 2012. "Detection of structural breaks in linear dynamic panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3020-3034.
    4. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    5. Felix Chan Tommaso Mancini-Griffoli Laurent L. Pauwels, 2006. "Stability Tests for Heterogeneous Panel Data," IHEID Working Papers 24-2006, Economics Section, The Graduate Institute of International Studies, revised Dec 2006.
    6. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    7. Su Liangjun & Junhui Qian, 2015. "Shrinkage Estimation of Common Breaks in Panel Data Models via Adaptive Group Fused Lasso," Working Papers 07-2015, Singapore Management University, School of Economics.
    8. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    9. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    10. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    11. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    2. Bada, O. & Kneip, A. & Liebl, D. & Mensinger, T. & Gualtieri, J. & Sickles, R.C., 2022. "A wavelet method for panel models with jump discontinuities in the parameters," Journal of Econometrics, Elsevier, vol. 226(2), pages 399-422.
    3. Huanjun Zhu & Vasilis Sarafidis & Mervyn J Silvapulle, 2020. "A new structural break test for panels with common factors [Panel data models with multiple time-varying individual effects]," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 137-155.
    4. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    5. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    6. Felix Chan Tommaso Mancini-Griffoli Laurent L. Pauwels, 2006. "Stability Tests for Heterogeneous Panel Data," IHEID Working Papers 24-2006, Economics Section, The Graduate Institute of International Studies, revised Dec 2006.
    7. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    8. Pauwels Laurent L. & Chan Felix & Mancini Griffoli Tommaso, 2012. "Testing for Structural Change in Heterogeneous Panels with an Application to the Euro's Trade Effect," Journal of Time Series Econometrics, De Gruyter, vol. 4(2), pages 1-35, November.
    9. Jan Ditzen & Yiannis Karavias & Joakim Westerlund, 2022. "Multiple Structural Breaks in Interactive Effects Panel Data and the Impact of Quantitative Easing on Bank Lending," Papers 2211.06707, arXiv.org, revised Jan 2023.
    10. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.
    11. Matúš Maciak & Michal Pešta & Barbora Peštová, 2020. "Changepoint in dependent and non-stationary panels," Statistical Papers, Springer, vol. 61(4), pages 1385-1407, August.
    12. Otilia Boldea & Bettina Drepper & Zhuojiong Gan, 2020. "Change point estimation in panel data with time‐varying individual effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 712-727, September.
    13. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    14. Chen, Sanpan & Cui, Guowei & Zhang, Jianhua, 2017. "On testing for structural break of coefficients in factor-augmented regression models," Economics Letters, Elsevier, vol. 161(C), pages 141-145.
    15. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    16. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    17. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    18. Milda Norkuté & Vasilis Sarafidis & Takashi Yamagata, 2018. "Instrumental Variable Estimation of Dynamic Linear Panel Data Models with Defactored Regressors and a Multifactor Error Structure," ISER Discussion Paper 1019, Institute of Social and Economic Research, Osaka University.
    19. Ye, Xiaoqing & Xu, Juan & Wu, Xiangjun, 2018. "Estimation of an unbalanced panel data Tobit model with interactive effects," Journal of choice modelling, Elsevier, vol. 28(C), pages 108-123.
    20. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).

    More about this item

    Keywords

    Method of moments; unobserved heterogeneity; break-point detection; fixed T asymptotics;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2015-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.