IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2013-23.html
   My bibliography  Save this paper

Non-parametric Estimation of Operational Risk and Expected Shortfall

Author

Listed:
  • Ainura Tursunalieva
  • Param Silvapulle

Abstract

This paper proposes improvements to advanced measurement approach (AMA) to estimating operational risks, and applies the improved methods to US business losses categorised into five business lines and three event types operational losses. The AMA involves, among others, modelling a loss severity distribution and estimating the Expected Loss and the 99.9% operational value-at-risk (OpVaR). These measures form a basis for calculating the levels of regulatory and economic capitals required to cover risks arising from operational losses. In this paper, Expected Loss and OpVaR are estimated consistently and efficiently by nonparametric methods, which use the large (tail) losses as primary inputs. In addition, the 95% intervals for the underlying true OpVaR are estimated by the weighted empirical likelihood method. As an alternate measure to OpVaR, the Expected Shortfall - a coherent risk- is also estimated. The empirical findings show that the interval estimates are asymmetric, with very large upper bounds, highlighting the extent of uncertainties associated with the 99.9% OpVaR point estimates. The Expected Shortfalls are invariably greater than the corresponding OpVaRs. The heavier the loss severity distribution the greater the difference between OpVaR and Expected Shortfall, from which we infer that the latter would provide the right level of capital to cover risks than would the former, particularly during

Suggested Citation

  • Ainura Tursunalieva & Param Silvapulle, 2013. "Non-parametric Estimation of Operational Risk and Expected Shortfall," Monash Econometrics and Business Statistics Working Papers 23/13, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2013-23
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp23-13.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    2. Peter Hall & Qiwei Yao, 2003. "Data tilting for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 425-442, May.
    3. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    4. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    5. Peng, Liang, 2001. "Estimating the mean of a heavy tailed distribution," Statistics & Probability Letters, Elsevier, vol. 52(3), pages 255-264, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    2. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    4. Tursunalieva, Ainura & Silvapulle, Param, 2016. "Nonparametric estimation of operational value-at-risk (OpVaR)," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 194-201.
    5. Nieto, María Rosa, 2010. "Bootstrap prediction intervals for VaR and ES in the context of GARCH models," DES - Working Papers. Statistics and Econometrics. WS ws102814, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Iñaki Aldasoro & Leonardo Gambacorta & Paolo Giudici & Thomas Leach, 2023. "Operational and Cyber Risks in the Financial Sector," International Journal of Central Banking, International Journal of Central Banking, vol. 19(5), pages 340-402, December.
    7. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    8. Stefan Mittnik & Sandra Paterlini & Tina Yener, 2011. "Operational–risk Dependencies and the Determination of Risk Capital," Center for Economic Research (RECent) 070, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    9. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    10. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    11. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    12. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    13. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    14. Maria Logvaneva & Mikhail Tselishchev, 2022. "On a Stochastic Model of Diversification," Papers 2204.01284, arXiv.org.
    15. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.
    16. Eugene N. Gurenko & Alexander Itigin, 2009. "Solvency Measures for Insurance Companies : Is There a Room for Improvement?," World Bank Publications - Reports 12831, The World Bank Group.
    17. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    18. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    19. Peters, Gareth W. & Shevchenko, Pavel V. & Young, Mark & Yip, Wendy, 2011. "Analytic loss distributional approach models for operational risk from the α-stable doubly stochastic compound processes and implications for capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 565-579.
    20. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.

    More about this item

    Keywords

    Heavy-tailed distribution; Loss severity distribution; Data tilting method; OpVaR; Expected shortfall;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2013-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.