IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2012-7.html
   My bibliography  Save this paper

Solving Replication Problems in Complete Market by Orthogonal Series Expansion

Author

Listed:
  • Chaohua Dong
  • Jiti Gao

Abstract

We reconsider the replication problem for contingent claims in a complete market under a general framework. Since there are various limitations in the Black-Scholes pricing formula, we propose a new method to obtain an explicit self-financing trading strategy expression for replications of claims in a general model. The departure of our method from the literature is, using an orthogonal expansion of a process related to the proposed trading strategy, we can construct a complete orthonormal basis for the space of cumulative gains in the complete market so that every self-financing strategy can be expressed as a combination of the basis. Hence, a replication strategy is obtained for a European option. Converse to the traditional Black-Scholes theory, we derive a pricing formula for a European option from the proposed replication strategy that is quite different from the Black-Scholes pricing formula. We then provide an implementation procedure to show how the proposed trading strategy works in practice and then compare with a replication strategy based on the Black-Scholes theory.

Suggested Citation

  • Chaohua Dong & Jiti Gao, 2012. "Solving Replication Problems in Complete Market by Orthogonal Series Expansion," Monash Econometrics and Business Statistics Working Papers 7/12, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2012-7
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp7-12.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Huyên Pham, 2000. "On quadratic hedging in continuous time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(2), pages 315-339, April.
    2. MacBeth, James D & Merville, Larry J, 1979. "An Empirical Examination of the Black-Scholes Call Option Pricing Model," Journal of Finance, American Finance Association, vol. 34(5), pages 1173-1186, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hammoudeh, Shawkat & McAleer, Michael, 2013. "Risk management and financial derivatives: An overview," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 109-115.
    2. Chaohua Dong & Jiti Gao, 2013. "Orthogonal Expansion of Levy Process Functionals: Theory and Practice," Monash Econometrics and Business Statistics Working Papers 3/13, Monash University, Department of Econometrics and Business Statistics.
    3. Lin, Shin-Hung & Huang, Hung-Hsi & Li, Sheng-Han, 2015. "Option pricing under truncated Gram–Charlier expansion," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 77-97.
    4. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Retrieving the implicit risk neutral density of WTI options with a semi-nonparametric approach," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianconi, Marcelo & MacLachlan, Scott & Sammon, Marco, 2015. "Implied volatility and the risk-free rate of return in options markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 1-26.
    2. Michael J. Dueker & Thomas W. Miller, 1996. "Market microstructure effects on the direct measurement of the early exercise premium in exchange-listed options," Working Papers 1996-013, Federal Reserve Bank of St. Louis.
    3. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    4. Tan, Zekuang, 2017. "RBC LiONS™ S&P 500 Buffered Protection Securities (USD) Series 4 Analysis Option Pricing Analysis, Issuing Company Risk-hedging Analysis, and Recommended Investment Strategy," MPRA Paper 83669, University Library of Munich, Germany.
    5. Hepperger, Peter, 2012. "Hedging electricity swaptions using partial integro-differential equations," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 600-622.
    6. Cl'ement M'enass'e & Peter Tankov, 2015. "Asymptotic indifference pricing in exponential L\'evy models," Papers 1502.03359, arXiv.org, revised Feb 2015.
    7. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org, revised Jul 2024.
    8. Christine A. Brown, 1999. "The Volatility Structure Implied by Options on the SPI Futures Contract," Australian Journal of Management, Australian School of Business, vol. 24(2), pages 115-130, December.
    9. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2016. "Explaining the volatility smile: non-parametric versus parametric option models," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 907-935, May.
    10. R. L. Brown & T. J. Shevlin, 1983. "Stock Market Efficiency and Price Predictions Implicit in Option Trading," Australian Journal of Management, Australian School of Business, vol. 8(2), pages 71-93, December.
    11. Ming-Yuan Leon Li & Chun-Nan Chen, 2010. "Examining the interrelation dynamics between option and stock markets using the Markov-switching vector error correction model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(7), pages 1173-1191.
    12. Asea, Patrick K. & Ncube, Mthuli, 1998. "Heterogeneous information arrival and option pricing," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 291-323.
    13. Koichi Matsumoto, 2009. "Mean-Variance Hedging with Uncertain Trade Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 219-252.
    14. Barunik, Jozef & Barunikova, Michaela, 2015. "Revisiting the long memory dynamics of implied-realized volatility relation: A new evidence from wavelet band spectrum regression," FinMaP-Working Papers 43, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    15. David R. Peterson, 1986. "An Empirical Test Of An Ex-Ante Model Of The Determination Of Stock Return Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 9(3), pages 203-214, September.
    16. Lieu, Derming, 1997. "Estimation of empirical pricing equations for foreign-currency options: Econometric models vs. arbitrage-free models," International Review of Economics & Finance, Elsevier, vol. 6(3), pages 259-286.
    17. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    18. Tomáš Tichý, 2008. "Posouzení vybraných možností zefektivnění simulace Monte Carlo při opčním oceňování [Examination of selected improvement approaches to Monte Carlo simulation in option pricing]," Politická ekonomie, Prague University of Economics and Business, vol. 2008(6), pages 772-794.
    19. Kamil Kladivko & Mihail Zervos, 2017. "Valuation of Employee Stock Options (ESOs) by means of Mean-Variance Hedging," Papers 1710.00897, arXiv.org.
    20. Robert Brooks & Joshua A. Brooks, 2017. "An Option Valuation Framework Based On Arithmetic Brownian Motion: Justification And Implementation Issues," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 40(3), pages 401-427, September.

    More about this item

    Keywords

    Approximation theory; Black-Scholes theory; complete market; stochastic process; time series;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2012-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.