IDEAS home Printed from https://ideas.repec.org/p/mse/wpsorb/b05097.html
   My bibliography  Save this paper

Modèles ordinaux de préférences

Author

Listed:

Abstract

Dans ce texte à visée didactique on présente les principaux modèles d'ordres utilisés pour représenter les préférences d'un sujet sur un ensemble fini de biens de nature variée. On part du modèle d'ordre fort correspondant au cas où la préférence est représentée par une fonction d'utilité numérique, modèle qui implique que la relation d'indifférence du sujet est transitive. Les modèles d'ordre quasi-fort et d'ordre d'intervalles permettent de ne plus supposer l'indifférence transitive, tout en conservant des propriétés de représentation numériques avec l'introduction de seuils. Des résultats sur la caractérisation et la représentation numérique des relations de Ferrers, relations qui généralisent les relations d'ordres précédentes, permettent d'obtenir simplement les résultats sur ces relations d'ordres. Des compléments d'ordre historique ou mathématique sont proposés au lecteur

Suggested Citation

  • Bernard Monjardet, 2005. "Modèles ordinaux de préférences," Cahiers de la Maison des Sciences Economiques b05097, Université Panthéon-Sorbonne (Paris 1).
  • Handle: RePEc:mse:wpsorb:b05097
    as

    Download full text from publisher

    File URL: https://halshs.archives-ouvertes.fr/halshs-00173791
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. N. Georgescu-Roegen, 1936. "The Pure Theory of Consumers Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 50(4), pages 545-593.
    2. Fuad Aleskerov & Denis Bouyssou & Bernard Monjardet, 2007. "Utility Maximization, Choice and Preference," Springer Books, Springer, edition 0, number 978-3-540-34183-3, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Hudík, 2013. "When x Becomes x': Sameness and the Internal Consistency of Choice," ICER Working Papers 02-2013, ICER - International Centre for Economic Research.
    2. Pawel Dziewulski, 2021. "A comprehensive revealed preference approach to approximate utility maximisation," Working Paper Series 0621, Department of Economics, University of Sussex Business School.
    3. Obermeyer Andy & Wieland Bernhard & Evangelinos Christos, 2014. "Die ökonomische Bewertung kleiner Reisezeiteinsparungen / The Economic Valuation of Small Travel Time Savings," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(1), pages 44-69, February.
    4. Podinovski, Vladislav V., 2010. "Set choice problems with incomplete information about the preferences of the decision maker," European Journal of Operational Research, Elsevier, vol. 207(1), pages 371-379, November.
    5. Gerard Debreu, 1957. "Stochastic Choice and Cardinal Utility," Cowles Foundation Discussion Papers 39, Cowles Foundation for Research in Economics, Yale University.
    6. Bernard Monjardet & Jean-Pierre Barthélemy & Olivier Hudry & Bruno Leclerc, 2009. "Metric and latticial medians," Post-Print halshs-00408174, HAL.
    7. Schwartz, Thomas, 2014. "Choice functions and bounded rationality," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 14-18.
    8. Juan P. Aguilera & Levent Ülkü, 2017. "On the maximization of menu-dependent interval orders," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(2), pages 357-366, February.
    9. Susanne Fuchs-Seliger, 2016. "Axiomatic Models of Rational Behavior and Interpretations," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 33(4), pages 385-401, December.
    10. Denis Bouyssou & Marc Pirlot, 2020. "Unit representation of semiorders II: The general case," Working Papers hal-02918017, HAL.
    11. Alcantud, Jose C.R., 2006. "Maximality with or without binariness: Transfer-type characterizations," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 182-191, March.
    12. Quentin Couix, 2018. "From Methodology to Practice (and Back): Georgescu-Roegen's Philosophy of Economics and the Flow-Fund Model," Post-Print halshs-01854031, HAL.
    13. Denis Bouyssou & Marc Pirlot, 2021. "Unit representation of semiorders I: Countable sets," Post-Print hal-03280649, HAL.
    14. Hayashi, Takashi, 2008. "A note on small income effects," Journal of Economic Theory, Elsevier, vol. 139(1), pages 360-379, March.
    15. Galeazzi, Paolo & Marti, Johannes, 2023. "Choice structures in games," Games and Economic Behavior, Elsevier, vol. 140(C), pages 431-455.
    16. Elias Bouacida, 2021. "Identifying Choice Correspondences," Working Papers 327800275, Lancaster University Management School, Economics Department.
    17. Tyson, Christopher J., 2008. "Cognitive constraints, contraction consistency, and the satisficing criterion," Journal of Economic Theory, Elsevier, vol. 138(1), pages 51-70, January.
    18. S. Cerreia-Vioglio & F. Maccheroni & M. Marinacci & A. Rustichini, 2017. "Multinomial logit processes and preference discovery: inside and outside the black box," Working Papers 615, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    19. Salvador Barberà & Geoffroy De Clippel & Alejandro Neme & Kareen Rozen, 2019. "Order-k Rationality," Working Papers 1130, Barcelona School of Economics.
      • Salvador Barberà & Geoffroy De Cleppel & Alejandro Neme & Kareen Rozeen, 2020. "Order-k Rationality," Working Papers 4, Red Nacional de Investigadores en Economía (RedNIE).
      • Salvador Barber‡ & Geoffroy de Clippel & Alejandro Neme & Kareen Rozen, 2020. "Order-k Rationality," Working Papers 2020-10, Brown University, Department of Economics.
    20. Salvador Barberà & Geoffroy de Clippel & Alejandro Neme & Kareen Rozen, 2022. "Order-k rationality," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 1135-1153, June.

    More about this item

    Keywords

    Indifférence non transitive; ordre d'intervalles; ordre fort; ordre quasi-fort; préférence; relation de Ferrers;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:wpsorb:b05097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/msep1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.