IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/09023.html
   My bibliography  Save this paper

A new algorithm for the loss distribution function with applications to Operational Risk Management

Author

Abstract

Operational risks inside banks and insurance companies is currently an important task. The computation of a risk measure associated to these risks lies on the knowledge of the so-called Loss Distribution Function. Traditionally this distribution function is computed via the Panjer algorithm which is an iterative algorithm. In this paper, we propose an adaptation of this last algorithm in order to improve the computation of convolutions between Panjer class distributions and continuous distributions. This new approach permits to reduce drastically the variance of the estimated VAR associated to the operational risks

Suggested Citation

  • Dominique Guegan & Bertrand Hassani, 2009. "A new algorithm for the loss distribution function with applications to Operational Risk Management," Documents de travail du Centre d'Economie de la Sorbonne 09023, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Nov 2009.
  • Handle: RePEc:mse:cesdoc:09023
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2009/09023.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mark Craddock & David Heath & Eckhard Platen, 1999. "Numerical Inversion of Laplace Transforms: A Survey of Techniques with Applications to Derivative Pricing," Research Paper Series 27, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Grübel, Rudolf & Hermesmeier, Renate, 1999. "Computation of Compound Distributions I: Aliasing Errors and Exponential Tilting," ASTIN Bulletin, Cambridge University Press, vol. 29(2), pages 197-214, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Bertrand Hassani, 2009. "A modified Panjer algorithm for operational risk capital calculations," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00443846, HAL.
    2. Dominique Guegan & Bertrand Hassani, 2009. "A modified Panjer algorithm for operational risk capital calculations," Post-Print halshs-00443846, HAL.
    3. Xiaolin Luo & Pavel V. Shevchenko, 2009. "Computing Tails of Compound Distributions Using Direct Numerical Integration," Papers 0904.0830, arXiv.org, revised Feb 2010.
    4. Dominique Guegan & Bertrand Hassani, 2009. "A new algorithm for the loss distribution function with applications to Operational Risk Management," Post-Print halshs-00384398, HAL.
    5. Pavel V. Shevchenko, 2010. "Calculation of aggregate loss distributions," Papers 1008.1108, arXiv.org.
    6. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    7. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    8. Christina Büsing & Sigrid Knust & Xuan Thanh Le, 2018. "Trade-off between robustness and cost for a storage loading problem: rule-based scenario generation," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 339-365, December.
    9. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    10. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    11. Jiang Cheng & Hung-Gay Fung & Tzu-Ting Lin & Min-Ming Wen, 2024. "CEO optimism and the use of credit default swaps: evidence from the US life insurance industry," Review of Quantitative Finance and Accounting, Springer, vol. 63(1), pages 169-194, July.
    12. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2014. "Beyond cash-additive risk measures: when changing the numéraire fails," Finance and Stochastics, Springer, vol. 18(1), pages 145-173, January.
    13. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
    14. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    15. Louis Anthony (Tony)Cox, 2008. "What's Wrong with Risk Matrices?," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 497-512, April.
    16. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    17. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    18. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    19. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    20. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.

    More about this item

    Keywords

    Operational risk; Panjer algorithm; Kernel; numerical integration; convolution;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:09023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.