IDEAS home Printed from https://ideas.repec.org/p/mos/moswps/2007-20.html
   My bibliography  Save this paper

Two New Exponential Families Of Lorenz Curves

Author

Listed:
  • ZuXiang Wang
  • Russell Smyth

Abstract

We present two new Lorenz curve families by using the basic model proposed by Sarabia, Castillo and Slottje (1999). We present estimations which show that the models in our new families are very efficient when applied to data on income distribution for a range of countries from Shorrocks (1983).

Suggested Citation

  • ZuXiang Wang & Russell Smyth, 2007. "Two New Exponential Families Of Lorenz Curves," Monash Economics Working Papers 20-07, Monash University, Department of Economics.
  • Handle: RePEc:mos:moswps:2007-20
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/eco/research/papers/2007/2007exponentialwangsmyth.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    2. José-María Sarabia & Enrique Castillo & Daniel J. Slottje, 2001. "An Exponential Family of Lorenz Curves," Southern Economic Journal, John Wiley & Sons, vol. 67(3), pages 748-756, January.
    3. Ogwang, Tomson & Rao, U. L. Gouranga, 2000. "Hybrid models of the Lorenz curve," Economics Letters, Elsevier, vol. 69(1), pages 39-44, October.
    4. ZuXiang Wang & Yew-Kwang Ng & Russell Smyth, 2007. "Revisiting The Ordered Family Of Lorenz Curves," Monash Economics Working Papers 19-07, Monash University, Department of Economics.
    5. repec:bla:econom:v:50:y:1983:i:197:p:3-17 is not listed on IDEAS
    6. Chotikapanich, Duangkamon, 1993. "A comparison of alternative functional forms for the Lorenz curve," Economics Letters, Elsevier, vol. 41(2), pages 129-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuxiang Wang & Yew‐Kwang Ng & Russell Smyth, 2011. "A General Method For Creating Lorenz Curves," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 57(3), pages 561-582, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    2. WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
    3. Miguel Sordo & Jorge Navarro & José Sarabia, 2014. "Distorted Lorenz curves: models and comparisons," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 761-780, April.
    4. ZuXiang Wang & Yew-Kwang Ng & Russell Smyth, 2007. "Revisiting The Ordered Family Of Lorenz Curves," Monash Economics Working Papers 19-07, Monash University, Department of Economics.
    5. Sarabia, José María & Gómez-Déniz, Emilio & Sarabia, María & Prieto, Faustino, 2010. "A general method for generating parametric Lorenz and Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 4(4), pages 524-539.
    6. Thitithep Sitthiyot & Kanyarat Holasut, 2021. "A simple method for estimating the Lorenz curve," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    7. Wang, ZuXiang & Smyth, Russell, 2015. "A piecewise method for estimating the Lorenz curve," Economics Letters, Elsevier, vol. 129(C), pages 45-48.
    8. Zuxiang Wang & Yew‐Kwang Ng & Russell Smyth, 2011. "A General Method For Creating Lorenz Curves," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 57(3), pages 561-582, September.
    9. Melanie Krause, 2014. "Parametric Lorenz Curves and the Modality of the Income Density Function," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 905-929, December.
    10. Andrew C. Chang & Phillip Li & Shawn M. Martin, 2018. "Comparing cross‐country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 473-478, April.
    11. Wang, Yuanjun & You, Shibing, 2016. "An alternative method for modeling the size distribution of top wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 443-453.
    12. Sarabia Alegría, J.M & Pascual Sáez, Marta, 2001. "Rankings de distribuciones de renta basados en curvas de Lorenz ordenadas: un estudio empírico1," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 19, pages 151-169, Diciembre.
    13. Sarabia, José María & Castillo, Enrique & Pascual, Marta & Sarabia, María, 2005. "Mixture Lorenz curves," Economics Letters, Elsevier, vol. 89(1), pages 89-94, October.
    14. Johan Fellman, 2021. "Empirical Analyses of Income: Finland (2009) and Australia (1967-1968)," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 10(1), pages 1-3.
    15. Helene, Otaviano, 2010. "Fitting Lorenz curves," Economics Letters, Elsevier, vol. 108(2), pages 153-155, August.
    16. Khosravi Tanak, A. & Mohtashami Borzadaran, G.R. & Ahmadi, Jafar, 2018. "New functional forms of Lorenz curves by maximizing Tsallis entropy of income share function under the constraint on generalized Gini index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 280-288.
    17. Edwin Fourrier-Nicolaï & Michel Lubrano, 2021. "Bayesian Inference for Parametric Growth Incidence Curves," Research on Economic Inequality, in: Research on Economic Inequality: Poverty, Inequality and Shocks, volume 29, pages 31-55, Emerald Group Publishing Limited.
    18. Lina Cortés & Juan M. Lozada & Javier Perote, 2019. "Firm size and concentration inequality: A flexible extension of Gibrat’s law," Documentos de Trabajo de Valor Público 17205, Universidad EAFIT.
    19. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Working Papers halshs-02320110, HAL.
    20. Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.

    More about this item

    Keywords

    Lorenz curve;

    JEL classification:

    • D3 - Microeconomics - - Distribution
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mos:moswps:2007-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Simon Angus (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.