IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v33y2018i3p473-478.html
   My bibliography  Save this article

Comparing cross‐country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets*

* This paper is a replication of an original study

Author

Listed:
  • Andrew C. Chang
  • Phillip Li
  • Shawn M. Martin

Abstract

Chotikapanich and Griffiths (Journal of Business and Economic Statistics, 2002, 20(2), 290–295) introduced the Dirichlet distribution to the estimation of Lorenz curves. This distribution naturally accommodates the proportional nature of income share data and the dependence structure between the shares. Chotikapanich and Griffiths fit a family of five Lorenz curves to one year of Swedish and Brazilian income share data using unconstrained maximum likelihood and unconstrained nonlinear least squares. We attempt to replicate the authors' results and extend their analyses using both constrained estimation techniques and five additional years of data. We successfully replicate a majority of the authors' results and find that some of their main qualitative conclusions also hold using our constrained estimators and additional data.

Suggested Citation

  • Andrew C. Chang & Phillip Li & Shawn M. Martin, 2018. "Comparing cross‐country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 473-478, April.
  • Handle: RePEc:wly:japmet:v:33:y:2018:i:3:p:473-478
    DOI: 10.1002/jae.2595
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.2595
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.2595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    2. repec:bla:revinw:v:37:y:1991:i:4:p:447-52 is not listed on IDEAS
    3. Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.
    4. Duangkamon Chotikapanich & William Griffiths, 2005. "Averaging Lorenz curves," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 3(1), pages 1-19, April.
    5. Christian Zimmermann, 2015. "On the Need for a Replication Journal," Working Papers 2015-16, Federal Reserve Bank of St. Louis.
    6. Rohde, Nicholas, 2009. "An alternative functional form for estimating the Lorenz curve," Economics Letters, Elsevier, vol. 105(1), pages 61-63, October.
    7. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    8. P. Ortega & G. Martín & A. Fernández & M. Ladoux & A. García, 1991. "A New Functional Form For Estimating Lorenz Curves," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 37(4), pages 447-452, December.
    9. Helene, Otaviano, 2010. "Fitting Lorenz curves," Economics Letters, Elsevier, vol. 108(2), pages 153-155, August.
    10. José-María Sarabia & Enrique Castillo & Daniel J. Slottje, 2001. "An Exponential Family of Lorenz Curves," Southern Economic Journal, John Wiley & Sons, vol. 67(3), pages 748-756, January.
    11. Duangkamon Chotikapanich & William E. Griffiths, 2008. "Estimating Income Distributions Using a Mixture of Gamma Densities," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 16, pages 285-302, Springer.
    12. Villasenor, JoseA. & Arnold, Barry C., 1989. "Elliptical Lorenz curves," Journal of Econometrics, Elsevier, vol. 40(2), pages 327-338, February.
    13. Sarabia, José María & Castillo, Enrique & Pascual, Marta & Sarabia, María, 2005. "Mixture Lorenz curves," Economics Letters, Elsevier, vol. 89(1), pages 89-94, October.
    14. Rasche, R H, et al, 1980. "Functional Forms for Estimating the Lorenz Curve: Comment," Econometrica, Econometric Society, vol. 48(4), pages 1061-1062, May.
    15. Hasegawa, Hikaru & Kozumi, Hideo, 2003. "Estimation of Lorenz curves: a Bayesian nonparametric approach," Journal of Econometrics, Elsevier, vol. 115(2), pages 277-291, August.
    16. Wang, ZuXiang & Smyth, Russell, 2015. "A hybrid method for creating Lorenz curves," Economics Letters, Elsevier, vol. 133(C), pages 59-63.
    17. Kwang Soo Cheong, 2002. "An empirical comparison of alternative functional forms for the Lorenz curve," Applied Economics Letters, Taylor & Francis Journals, vol. 9(3), pages 171-176.
    18. Chotikapanich, Duangkamon, 1993. "A comparison of alternative functional forms for the Lorenz curve," Economics Letters, Elsevier, vol. 41(2), pages 129-138.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thitithep Sitthiyot & Kanyarat Holasut, 2021. "A simple method for estimating the Lorenz curve," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    2. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    3. Miguel Sordo & Jorge Navarro & José Sarabia, 2014. "Distorted Lorenz curves: models and comparisons," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 761-780, April.
    4. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Working Papers halshs-02320110, HAL.
    5. ZuXiang Wang & Yew-Kwang Ng & Russell Smyth, 2007. "Revisiting The Ordered Family Of Lorenz Curves," Monash Economics Working Papers 19-07, Monash University, Department of Economics.
    6. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Economics Working Paper Archive (University of Rennes & University of Caen) 2019-09, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    7. Genya Kobayashi & Kazuhiko Kakamu, 2019. "Approximate Bayesian computation for Lorenz curves from grouped data," Computational Statistics, Springer, vol. 34(1), pages 253-279, March.
    8. WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
    9. Melanie Krause, 2014. "Parametric Lorenz Curves and the Modality of the Income Density Function," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 905-929, December.
    10. Sarabia, José María & Gómez-Déniz, Emilio & Sarabia, María & Prieto, Faustino, 2010. "A general method for generating parametric Lorenz and Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 4(4), pages 524-539.
    11. Khosravi Tanak, A. & Mohtashami Borzadaran, G.R. & Ahmadi, Jafar, 2018. "New functional forms of Lorenz curves by maximizing Tsallis entropy of income share function under the constraint on generalized Gini index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 280-288.
    12. Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
    13. Wang, Yuanjun & You, Shibing, 2016. "An alternative method for modeling the size distribution of top wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 443-453.
    14. Sarabia, José María & Castillo, Enrique & Pascual, Marta & Sarabia, María, 2005. "Mixture Lorenz curves," Economics Letters, Elsevier, vol. 89(1), pages 89-94, October.
    15. Wang, ZuXiang & Smyth, Russell, 2015. "A piecewise method for estimating the Lorenz curve," Economics Letters, Elsevier, vol. 129(C), pages 45-48.
    16. Francois, Joseph & Rojas-Romagosa, Hugo, 2005. "The Construction and Interpretation of Combined Cross-Section and Time-Series Inequality Datasets," CEPR Discussion Papers 5214, C.E.P.R. Discussion Papers.
    17. Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.
    18. Louis Mesnard, 2022. "About some difficulties with the functional forms of Lorenz curves," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(4), pages 939-950, December.
    19. Ogwang, Tomson & Rao, U. L. Gouranga, 2000. "Hybrid models of the Lorenz curve," Economics Letters, Elsevier, vol. 69(1), pages 39-44, October.
    20. Rohde, Nicholas, 2009. "An alternative functional form for estimating the Lorenz curve," Economics Letters, Elsevier, vol. 105(1), pages 61-63, October.

    Replication

    This item is a replication of:
  • Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.
  • More about this item

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. Comparing Cross-Country Estimates of Lorenz Curves Using a Dirichlet Distribution Across Estimators and Datasets (Journal of Applied Econometrics 2018) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:33:y:2018:i:3:p:473-478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.