IDEAS home Printed from https://ideas.repec.org/p/mnb/opaper/2022-142.html
   My bibliography  Save this paper

Early Warning Performance of Univariate Credit-to-GDP Gaps

Author

Listed:
  • Zsuzsanna Hosszu

    (Magyar Nemzeti Bank (Central Bank of Hungary))

  • Gergely Lakos

    (Magyar Nemzeti Bank (Central Bank of Hungary))

Abstract

We use European and simulated Hungarian data to search for the univariate one-sided credit-to-GDP gap that predicts systemic banking crises most accurately. The credit-to-GDP gaps under review are optimized along four dimensions: (1) definition of outstanding credit, (2) forecasting method for extending credit-to-GDP time series, (3) filtering method and (4) maximum cycle length. Based on European data, we demonstrate that credit-to-GDP gaps calculated with narrow definition of outstanding credit and up to 1-year forecasts of credit-to-GDP outperform other specifications significantly and robustly. Regarding the other two dimensions, the Hodrick–Prescott filter with long cycles (popular in regulatory practice), the Christiano–Fitzgerald filter with medium-term cycles and the wavelet filter with short cycles prove to be the best. All three should be applied to credit-to-GDP time series calculated with narrow credit, and with no credit-to-GDP forecast, except the wavelet filter with short-term forecast. Credit-to-GDP gaps with most informative early warning signals exhibit the highest degree of comovement with the financial cycle, but not the lowest level of endpoint uncertainty. Analysis of Hungarian credit-to-GDP time series extended by ARIMA simulations reinforces the early warning quality of the Hodrick–Prescott credit gap and the wavelet credit gap to a lesser extent.

Suggested Citation

  • Zsuzsanna Hosszu & Gergely Lakos, 2022. "Early Warning Performance of Univariate Credit-to-GDP Gaps," MNB Occasional Papers 2022/142, Magyar Nemzeti Bank (Central Bank of Hungary).
  • Handle: RePEc:mnb:opaper:2022/142
    as

    Download full text from publisher

    File URL: https://www.mnb.hu/letoltes/mnb-op-142-final.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miroslav Plašil & Jakub Seidler & Petr Hlaváč, 2016. "A New Measure of the Financial Cycle: Application to the Czech Republic," Eastern European Economics, Taylor & Francis Journals, vol. 54(4), pages 296-318, July.
    2. Òscar Jordà & Moritz Schularick & Alan M. Taylor, 2017. "Macrofinancial History and the New Business Cycle Facts," NBER Macroeconomics Annual, University of Chicago Press, vol. 31(1), pages 213-263.
    3. Christoph Schleicher, 2002. "An Introduction to Wavelets for Economists," Staff Working Papers 02-3, Bank of Canada.
    4. Lang, Jan Hannes & Welz, Peter, 2018. "Semi-structural credit gap estimation," Working Paper Series 2194, European Central Bank.
    5. Sarlin, Peter, 2013. "On policymakers’ loss functions and the evaluation of early warning systems," Economics Letters, Elsevier, vol. 119(1), pages 1-7.
    6. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    7. Carmen M. Reinhart & Graciela L. Kaminsky, 1999. "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems," American Economic Review, American Economic Association, vol. 89(3), pages 473-500, June.
    8. Morten O. Ravn & Harald Uhlig, 2002. "On adjusting the Hodrick-Prescott filter for the frequency of observations," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 371-375.
    9. Peter C. B. Phillips & Sainan Jin, 2021. "Business Cycles, Trend Elimination, And The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 469-520, May.
    10. Graciela Kaminsky & Saul Lizondo & Carmen M. Reinhart, 1998. "Leading Indicators of Currency Crises," IMF Staff Papers, Palgrave Macmillan, vol. 45(1), pages 1-48, March.
    11. Lo Duca, Marco & Koban, Anne & Basten, Marisa & Bengtsson, Elias & Klaus, Benjamin & Kusmierczyk, Piotr & Lang, Jan Hannes & Detken, Carsten & Peltonen, Tuomas, 2017. "A new database for financial crises in European countries," Occasional Paper Series 194, European Central Bank.
    12. Javier Mencía & Jesús Saurina, 2016. "Macroprudential policy: objectives, instruments and indicators," Occasional Papers 1601, Banco de España.
    13. Hiebert, Paul & Jaccard, Ivan & Schüler, Yves, 2018. "Contrasting financial and business cycles: Stylized facts and candidate explanations," Journal of Financial Stability, Elsevier, vol. 38(C), pages 72-80.
    14. Mise, Emi & Kim, Tae-Hwan & Newbold, Paul, 2005. "On suboptimality of the Hodrick-Prescott filter at time series endpoints," Journal of Macroeconomics, Elsevier, vol. 27(1), pages 53-67, March.
    15. Lang, Jan Hannes & Izzo, Cosimo & Fahr, Stephan & Ruzicka, Josef, 2019. "Anticipating the bust: a new cyclical systemic risk indicator to assess the likelihood and severity of financial crises," Occasional Paper Series 219, European Central Bank.
    16. Martínez, Juan Francisco & Oda, Daniel, 2021. "Characterization of the Chilean financial cycle, early warning indicators and implications for macro-prudential policies," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(1).
    17. Eero Tölö & Helinä Laakkonen & Simo Kalatie, 2018. "Evaluating Indicators for Use in Setting the Countercyclical Capital Buffer," International Journal of Central Banking, International Journal of Central Banking, vol. 14(2), pages 51-112, March.
    18. Robert J. Hodrick, 2020. "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data," NBER Working Papers 26750, National Bureau of Economic Research, Inc.
    19. Sondermann, David & Zorell, Nico, 2019. "A macroeconomic vulnerability model for the euro area," Working Paper Series 2306, European Central Bank.
    20. Schüler, Yves S., 2018. "Detrending and financial cycle facts across G7 countries: mind a spurious medium term!," Working Paper Series 2138, European Central Bank.
    21. Lee, Seung Jung & Posenau, Kelly E. & Stebunovs, Viktors, 2020. "The anatomy of financial vulnerabilities and banking crises," Journal of Banking & Finance, Elsevier, vol. 112(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021. "Identifying indicators of systemic risk," Journal of International Economics, Elsevier, vol. 132(C).
    2. Dieckelmann, Daniel, 2020. "Cross-border lending and the international transmission of banking crises," Discussion Papers 2020/13, Free University Berlin, School of Business & Economics.
    3. Truong, Chi & Sheen, Jeffrey & Trück, Stefan & Villafuerte, James, 2022. "Early warning systems using dynamic factor models: An application to Asian economies," Journal of Financial Stability, Elsevier, vol. 58(C).
    4. Schüler, Yves S. & Hiebert, Paul P. & Peltonen, Tuomas A., 2020. "Financial cycles: Characterisation and real-time measurement," Journal of International Money and Finance, Elsevier, vol. 100(C).
    5. Mathias Drehmann & James Yetman, 2021. "Which Credit Gap Is Better at Predicting Financial Crises? A Comparison of Univariate Filters," International Journal of Central Banking, International Journal of Central Banking, vol. 17(70), pages 1-31, October.
    6. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    7. Tihana Skrinjaric, 2023. "Leading indicators of financial stress in Croatia: a regime switching approach," Public Sector Economics, Institute of Public Finance, vol. 47(2), pages 205-232.
    8. Tölö, Eero, 2020. "Predicting systemic financial crises with recurrent neural networks," Journal of Financial Stability, Elsevier, vol. 49(C).
    9. Lang, Jan Hannes & Izzo, Cosimo & Fahr, Stephan & Ruzicka, Josef, 2019. "Anticipating the bust: a new cyclical systemic risk indicator to assess the likelihood and severity of financial crises," Occasional Paper Series 219, European Central Bank.
    10. Adam Geršl & Thomas Mitterling, 2021. "Forecast-Augmented Credit-to-GDP Gap as an Early Warning Indicator of Banking Crises," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(4), pages 323-351, December.
    11. Casabianca, Elizabeth Jane & Catalano, Michele & Forni, Lorenzo & Giarda, Elena & Passeri, Simone, 2022. "A machine learning approach to rank the determinants of banking crises over time and across countries," Journal of International Money and Finance, Elsevier, vol. 129(C).
    12. Sturn, Simon & Epstein, Gerald, 2021. "How much should we trust five-year averaging to purge business cycle effects? A reassessment of the finance-growth and capital accumulation-unemployment nexus," Economic Modelling, Elsevier, vol. 96(C), pages 242-256.
    13. Markus Behn & Carsten Detken & Tuomas Peltonen & Willem Schudel, 2017. "Predicting Vulnerabilities in the EU Banking Sector: The Role of Global and Domestic Factors," International Journal of Central Banking, International Journal of Central Banking, vol. 13(4), pages 147-189, December.
    14. Jorge E. Galán, 2019. "Measuring credit-to-gdp gaps. The hodrick-prescott filter revisited," Occasional Papers 1906, Banco de España.
    15. Jylhä, Petri & Lof, Matthijs, 2022. "Mind the Basel gap," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    16. Marcin Pietrzak, 2021. "Can Financial Soundness Indicators Help Predict Financial Sector Distress?," IMF Working Papers 2021/197, International Monetary Fund.
    17. Detken, Carsten & Peltonen, Tuomas A. & Schudel, Willem & Behn, Markus, 2013. "Setting countercyclical capital buffers based on early warning models: would it work?," Working Paper Series 1604, European Central Bank.
    18. Jorge E. Galán & Javier Mencía, 2021. "Model-based indicators for the identification of cyclical systemic risk," Empirical Economics, Springer, vol. 61(6), pages 3179-3211, December.
    19. Konon, Alexander & Fritsch, Michael & Kritikos, Alexander S., 2018. "Business cycles and start-ups across industries: An empirical analysis of German regions," Journal of Business Venturing, Elsevier, vol. 33(6), pages 742-761.
    20. Mikkel Hermansen & Oliver Röhn, 2017. "Economic resilience: The usefulness of early warning indicators in OECD countries," OECD Journal: Economic Studies, OECD Publishing, vol. 2016(1), pages 9-35.

    More about this item

    Keywords

    financial cycle; crises; early warning; univariate filtering methods;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mnb:opaper:2022/142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lorant Kaszab (email available below). General contact details of provider: https://edirc.repec.org/data/mnbgvhu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.