IDEAS home Printed from https://ideas.repec.org/p/mlb/wpaper/960.html
   My bibliography  Save this paper

Bayesian Assessment of Lorenz and Stochastic Dominance in Income Distributions

Author

Listed:
  • Duangkamon Chotikapanich
  • William E. Griffiths

Abstract

Hypothesis tests for dominance in income distributions has received considerable attention in recent literature. See, for example, Barrett and Donald (2003), Davidson and Duclos (2000) and references therein. Such tests are useful for assessing progress towards eliminating poverty and for evaluating the effectiveness of various policy initiatives directed towards welfare improvement. To date the focus in the literature has been on sampling theory tests. Such tests can be set up in various ways, with dominance as the null or alternative hypothesis, and with dominance in either direction (X dominates Y or Y dominates X). The result of a test is expressed as rejection of, or failure to reject, a null hypothesis. In this paper we develop and apply Bayesian methods of inference to problems of Lorenz and stochastic dominance. The result from a comparison of two income distributions is reported in terms of the posterior probabilities for each of the three possible outcomes: (a) X dominates Y, (b) Y dominates X, and (c) neither X nor Y is dominant. Reporting results about uncertain outcomes in terms of probabilities has the advantage of being more informative than a simple reject / do-not-reject outcome. Whether a probability is sufficiently high or low for a policy maker to take a particular action is then a decision for that policy maker. The methodology is applied to data for Canada from the Family Expenditure Survey for the years 1978 and 1986. We assess the likelihood of dominance from one time period to the next. Two alternative assumptions are made about the income distributions –Dagum and Singh-Maddala – and in each case the posterior probability of dominance is given by the proportion of times a relevant parameter inequality is satisfied by the posterior observations generated by Markov chain Monte Carlo.

Suggested Citation

  • Duangkamon Chotikapanich & William E. Griffiths, 2006. "Bayesian Assessment of Lorenz and Stochastic Dominance in Income Distributions," Department of Economics - Working Papers Series 960, The University of Melbourne.
  • Handle: RePEc:mlb:wpaper:960
    as

    Download full text from publisher

    File URL: http://www.economics.unimelb.edu.au/downloads/wpapers-06/960.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Y.K. Tse & Xibin Zhang, 2003. "A Monte Carlo Investigation of Some Tests for Stochastic Dominance," Monash Econometrics and Business Statistics Working Papers 7/03, Monash University, Department of Econometrics and Business Statistics.
    2. Cowell, Frank, 1996. "Estimation of inequality indices," LSE Research Online Documents on Economics 2229, London School of Economics and Political Science, LSE Library.
    3. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    4. Russell Davidson & Jean-Yves Duclos, 1997. "Statistical Inference for the Measurement of the Incidence of Taxes and Transfers," Econometrica, Econometric Society, vol. 65(6), pages 1453-1466, November.
    5. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    6. Valentino Dardanoni & Antonio Forcina, 1999. "Inference for Lorenz curve orderings," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 49-75.
    7. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    8. Garry F. Barrett & Stephen G. Donald & Debopam Bhattacharya, 2014. "Consistent Nonparametric Tests for Lorenz Dominance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 1-13, January.
    9. Duangkamon Chotikapanich & John Creedy, 2004. "The Atkinson Inequality Measure and its Sampling Properties: Bayesian and Classical Approaches," Australian Economic Papers, Wiley Blackwell, vol. 43(3), pages 302-314, September.
    10. Hasegawa, Hikaru & Kozumi, Hideo, 2003. "Estimation of Lorenz curves: a Bayesian nonparametric approach," Journal of Econometrics, Elsevier, vol. 115(2), pages 277-291, August.
    11. Kleiber, Christian, 1996. "Dagum vs. Singh-Maddala income distributions," Economics Letters, Elsevier, vol. 53(3), pages 265-268, December.
    12. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    13. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    14. Barrett, Garry F. & Donald, Stephen G., 2009. "Statistical Inference with Generalized Gini Indices of Inequality, Poverty, and Welfare," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 1-17.
    15. William E. Griffiths & Duangkamon Chotikapanich & D. S. Prasada Rao, 2005. "Averaging Income Distributions," Bulletin of Economic Research, Wiley Blackwell, vol. 57(4), pages 347-367, October.
    16. Anderson, Gordon, 1996. "Nonparametric Tests of Stochastic Dominance in Income Distributions," Econometrica, Econometric Society, vol. 64(5), pages 1183-1193, September.
    17. John Creedy, 1996. "Fiscal Policy and Social Welfare," Books, Edward Elgar Publishing, number 797.
    18. Klonner, Stefan, 2000. "The first-order stochastic dominance ordering of the Singh-Maddala distribution," Economics Letters, Elsevier, vol. 69(2), pages 123-128, November.
    19. Griffiths, William E & Chotikapanich, Duangkamon, 1997. "Bayesian Methodology for Imposing Inequality Constraints on a Linear Expenditure System with Demographic Factors," Australian Economic Papers, Wiley Blackwell, vol. 36(69), pages 321-341, December.
    20. Wilfling, Bernd & Kramer, Walter, 1993. "The Lorenz-ordering of Singh-Maddala income distributions," Economics Letters, Elsevier, vol. 43(1), pages 53-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Kleiber, 2008. "A Guide to the Dagum Distributions," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 6, pages 97-117, Springer.
    2. Duangkamon Chotikapanich & William E. Griffiths, 2008. "Estimating Income Distributions Using a Mixture of Gamma Densities," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 16, pages 285-302, Springer.
    3. Gunawan, David & Griffiths, William E. & Chotikapanich, Duangkamon, 2018. "Bayesian inference for health inequality and welfare using qualitative data," Economics Letters, Elsevier, vol. 162(C), pages 76-80.
    4. Edwin Fourrier-Nicolaï & Michel Lubrano, 2020. "Bayesian inference for TIP curves: an application to child poverty in Germany," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 18(1), pages 91-111, March.
    5. David Lander & David Gunawan & William Griffiths & Duangkamon Chotikapanich, 2020. "Bayesian assessment of Lorenz and stochastic dominance," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 767-799, May.
    6. David Gunawan & William Griffths & Duangkamon Chotikapanich, 2017. "Bayesian Inference for Health Inequality and Welfare Using Qualitative Data "Abstract: We show how to use Bayesian inference to compare two ordinal categorical distributions commonly occurring wi," Department of Economics - Working Papers Series 2031, The University of Melbourne.
    7. David Lander & David Gunawan & William E. Griffiths & Duangkamon Chotikapanich, 2016. "Bayesian Assessment of Lorenz and Stochastic Dominance Using a Mixture of Gamma Densities," Department of Economics - Working Papers Series 2023, The University of Melbourne.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank A. Cowell & Emmanuel Flachaire, 2014. "Statistical Methods for Distributional Analysis," Working Papers halshs-01115996, HAL.
    2. Francesco Andreoli, 2018. "Robust Inference for Inverse Stochastic Dominance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 146-159, January.
    3. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    4. Maasoumi, Esfandiar & Almas Heshmati, 2003. "Evaluating Dominance Ranking of PSID Incomes by various Household Attributes," Departmental Working Papers 0509, Southern Methodist University, Department of Economics.
    5. David Lander & David Gunawan & William Griffiths & Duangkamon Chotikapanich, 2020. "Bayesian assessment of Lorenz and stochastic dominance," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 767-799, May.
    6. David Lander & David Gunawan & William E. Griffiths & Duangkamon Chotikapanich, 2016. "Bayesian Assessment of Lorenz and Stochastic Dominance Using a Mixture of Gamma Densities," Department of Economics - Working Papers Series 2023, The University of Melbourne.
    7. Barrett, Garry F. & Donald, Stephen G. & Hsu, Yu-Chin, 2016. "Consistent tests for poverty dominance relations," Journal of Econometrics, Elsevier, vol. 191(2), pages 360-373.
    8. Thomas C. Chiang & Hooi Hooi Lean & Wing-Keung Wong, 2008. "Do REITs Outperform Stocks and Fixed-Income Assets? New Evidence from Mean-Variance and Stochastic Dominance Approaches," JRFM, MDPI, vol. 1(1), pages 1-40, December.
    9. Hongyi Jiang & Zhenting Sun & Shiyun Hu, 2023. "A Nonparametric Test of $m$th-degree Inverse Stochastic Dominance," Papers 2306.12271, arXiv.org, revised Jul 2023.
    10. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    11. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    12. Wen-Hao Chen & Jean-Yves Duclos, 2011. "Testing for poverty dominance: an application to Canada," Canadian Journal of Economics, Canadian Economics Association, vol. 44(3), pages 781-803, August.
    13. Khaled, Mohamad A. & Makdissi, Paul & Yazbeck, Myra, 2018. "Income-related health transfers principles and orderings of joint distributions of income and health," Journal of Health Economics, Elsevier, vol. 57(C), pages 315-331.
    14. Andrews, Donald W.K. & Shi, Xiaoxia, 2017. "Inference based on many conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 196(2), pages 275-287.
    15. Guo, Xu & Wong, Wing-Keung & Zhu, Lixing, 2013. "Make Almost Stochastic Dominance really Almost," MPRA Paper 49745, University Library of Munich, Germany.
    16. Oliver Linton & Kyungchui (Kevin) Song & Yoon-Jae Whang, 2008. "Bootstrap tests of stochastic dominance with asymptotic similarity on the boundary," CeMMAP working papers CWP08/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2010. "Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach," CIRJE F-Series CIRJE-F-705, CIRJE, Faculty of Economics, University of Tokyo.
    18. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Investor preferences for oil spot and futures based on mean-variance and stochastic dominance," Econometric Institute Research Papers EI 2010-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Stengos, Thanasis & Thompson, Brennan S., 2012. "Testing for bivariate stochastic dominance using inequality restrictions," Economics Letters, Elsevier, vol. 115(1), pages 60-62.
    20. Sokbae Lee & Yoon-Jae Whang, 2009. "Nonparametric Tests of Conditional Treatment Effects," Cowles Foundation Discussion Papers 1740, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    Keywords

    Bayesian; Income Distributions; Lorenz;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mlb:wpaper:960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dandapani Lokanathan (email available below). General contact details of provider: https://edirc.repec.org/data/demelau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.