IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v32y2014i1p1-13.html
   My bibliography  Save this article

Consistent Nonparametric Tests for Lorenz Dominance

Author

Listed:
  • Garry F. Barrett
  • Stephen G. Donald
  • Debopam Bhattacharya

Abstract

This article proposes consistent nonparametric methods for testing the null hypothesis of Lorenz dominance. The methods are based on a class of statistical functionals defined over the difference between the Lorenz curves for two samples of welfare-related variables. We present two specific test statistics belonging to the general class and derive their asymptotic properties. As the limiting distributions of the test statistics are nonstandard, we propose and justify bootstrap methods of inference. We provide methods appropriate for case where the two samples are independent as well as the case where the two samples represent different measures of welfare for one set of individuals. The small sample performance of the two tests is examined and compared in the context of a Monte Carlo study and an empirical analysis of income and consumption inequality.

Suggested Citation

  • Garry F. Barrett & Stephen G. Donald & Debopam Bhattacharya, 2014. "Consistent Nonparametric Tests for Lorenz Dominance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 1-13, January.
  • Handle: RePEc:taf:jnlbes:v:32:y:2014:i:1:p:1-13
    DOI: 10.1080/07350015.2013.834262
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2013.834262
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2013.834262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ryu, Hang K. & Slottje, Daniel J., 1996. "Two flexible functional form approaches for approximating the Lorenz curve," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 251-274.
    2. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    3. James Banks & Arie Kapteyn & James P. Smith & Arthur Van Soest, 2004. "International Comparisons of Work Disability," Working Papers WR-155, RAND Corporation.
    4. Anthony F. Shorrocks & James E. Foster, 1987. "Transfer Sensitive Inequality Measures," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 54(3), pages 485-497.
    5. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    6. Barrett, Garry F. & Donald, Stephen G., 2009. "Statistical Inference with Generalized Gini Indices of Inequality, Poverty, and Welfare," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 1-17.
    7. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    8. repec:bla:econom:v:58:y:1991:i:232:p:461-77 is not listed on IDEAS
    9. Charles M. Beach & Russell Davidson, 1983. "Distribution-Free Statistical Inference with Lorenz Curves and Income Shares," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 50(4), pages 723-735.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank A. Cowell & Emmanuel Flachaire, 2014. "Statistical Methods for Distributional Analysis," Working Papers halshs-01115996, HAL.
    2. Francesco Andreoli, 2018. "Robust Inference for Inverse Stochastic Dominance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 146-159, January.
    3. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    4. Härdle, Wolfgang Karl & Schulz, Rainer & Xie, Taojun, 2019. "Cooling Measures and Housing Wealth: Evidence from Singapore," IRTG 1792 Discussion Papers 2019-001, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Maasoumi, Esfandiar & Almas Heshmati, 2003. "Evaluating Dominance Ranking of PSID Incomes by various Household Attributes," Departmental Working Papers 0509, Southern Methodist University, Department of Economics.
    6. John Bishop & K. Chow & John Formby & Chih-Chin Ho, 1997. "Did Tax Reform Reduce Actual US Progressivity? Evidence from the Taxpayer Compliance Measurement Program," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 4(2), pages 177-197, May.
    7. David Lander & David Gunawan & William Griffiths & Duangkamon Chotikapanich, 2020. "Bayesian assessment of Lorenz and stochastic dominance," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 767-799, May.
    8. Wolfgang Karl Hardle & Rainer Schulz & Taojun Sie, 2021. "Cooling Measures and Housing Wealth: Evidence from Singapore," Papers 2108.11915, arXiv.org.
    9. David Lander & David Gunawan & William E. Griffiths & Duangkamon Chotikapanich, 2016. "Bayesian Assessment of Lorenz and Stochastic Dominance Using a Mixture of Gamma Densities," Department of Economics - Working Papers Series 2023, The University of Melbourne.
    10. Sarabia Alegría, J.M & Pascual Sáez, Marta, 2001. "Rankings de distribuciones de renta basados en curvas de Lorenz ordenadas: un estudio empírico1," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 19, pages 151-169, Diciembre.
    11. Aaberge, Rolf & Havnes, Tarjei & Mogstad, Magne, 2013. "A Theory for Ranking Distribution Functions," IZA Discussion Papers 7738, Institute of Labor Economics (IZA).
    12. Gigliarano, Chiara & Figini, Silvia & Muliere, Pietro, 2014. "Making classifier performance comparisons when ROC curves intersect," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 300-312.
    13. Rothe, Christoph, 2010. "Nonparametric estimation of distributional policy effects," Journal of Econometrics, Elsevier, vol. 155(1), pages 56-70, March.
    14. Charles Beach, 2023. "Quantile Tool Box Measures for Empirical Analysis and for Testing Distributional Comparisons in Direct Distribution-Free Fashion," Working Paper 1508, Economics Department, Queen's University.
    15. Rolf Aaberge & Tarjei Havnes & Magne Mogstad, 2021. "Ranking intersecting distribution functions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 639-662, September.
    16. Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
    17. Gordon Anderson, 2008. "The empirical assessment of multidimensional welfare, inequality and poverty: Sample weighted multivariate generalizations of the Kolmogorov–Smirnov two sample tests for stochastic dominance," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(1), pages 73-87, March.
    18. Russell Davidson, 2010. "Innis Lecture: Inference on income distributions," Canadian Journal of Economics, Canadian Economics Association, vol. 43(4), pages 1122-1148, November.
    19. Stephen G. Donald & Yu‐Chin Hsu & Garry F. Barrett, 2012. "Incorporating covariates in the measurement of welfare and inequality: methods and applications," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 1-30, February.
    20. Francesco Andreoli, 2013. "Inference for Inverse Stochastic Dominance," Working Papers 295, ECINEQ, Society for the Study of Economic Inequality.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:32:y:2014:i:1:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.