On Lasso-type estimation for dynamical systems with small noise
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Masayuki Uchida & Nakahiro Yoshida, 2004. "Information Criteria for Small Diffusions via the Theory of Malliavin–Watanabe," Statistical Inference for Stochastic Processes, Springer, vol. 7(1), pages 35-67, March.
- Kato, Kengo, 2009. "Asymptotics for argmin processes: Convexity arguments," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1816-1829, September.
- Kutoyants, Y. & Pilibossian, P., 1994. "On minimum L1-norm estimate of the parameter of the Ornstein--Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 20(2), pages 117-123, May.
- Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Benjamin Poignard, 2020. "Asymptotic theory of the adaptive Sparse Group Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 297-328, February.
- Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016.
"The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series," CeMMAP working papers 06/14, Institute for Fiscal Studies.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The Cross-Quantilogram: Measuring Quantile Dependence and Testing Directional Predictability between Time Series," Cambridge Working Papers in Economics 1452, Faculty of Economics, University of Cambridge.
- Heejoon Han & Oliver Linton & Tatsushi Oka & Yoon-Jae Whang, 2014. "The cross-quantilogram: measuring quantile dependence and testing directional predictability between time series," CeMMAP working papers CWP06/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Khai X. Chiong & Hyungsik Roger Moon, 2017. "Estimation of Graphical Models using the $L_{1,2}$ Norm," Papers 1709.10038, arXiv.org, revised Oct 2017.
- Christis Katsouris, 2022. "Asymptotic Theory for Unit Root Moderate Deviations in Quantile Autoregressions and Predictive Regressions," Papers 2204.02073, arXiv.org, revised Aug 2023.
- Yunyun Wang & Tatsushi Oka & Dan Zhu, 2023. "Distributional Vector Autoregression: Eliciting Macro and Financial Dependence," Papers 2303.04994, arXiv.org.
- Tatsushi Oka & Shota Yasui & Yuta Hayakawa & Undral Byambadalai, 2024. "Regression Adjustment for Estimating Distributional Treatment Effects in Randomized Controlled Trials," Papers 2407.14074, arXiv.org.
- Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
- Wang, Yunyun & Oka, Tatsushi & Zhu, Dan, 2023.
"Bivariate distribution regression with application to insurance data,"
Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 215-232.
- Yunyun Wang & Tatsushi Oka & Dan Zhu, 2022. "Bivariate Distribution Regression with Application to Insurance Data," Papers 2203.12228, arXiv.org, revised Sep 2023.
- Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.
- Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
- Xinghui Wang & Wenjing Geng & Ruidong Han & Qifa Xu, 2023. "Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-23, March.
- Bucher, Axel & El Ghouch, Anouar & Van Keilegom, Ingrid, 2014. "Single-index quantile regression models for censored data," LIDAM Discussion Papers ISBA 2014001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Dima, Bogdan & Dincă, Marius Sorin & Spulbăr, Cristi, 2014. "Financial nexus: Efficiency and soundness in banking and capital markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 100-124.
- Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
- Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016.
"Testing for monotonicity in unobservables under unconfoundedness,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
- Stefan Hoderlein & Liangjun Su & Halbert White & Thomas Tao Yang, 2015. "Testing for Monotonicity in Unobservables under Unconfoundedness," Boston College Working Papers in Economics 899, Boston College Department of Economics.
- Komunjer, Ivana, 2005.
"Quasi-maximum likelihood estimation for conditional quantiles,"
Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
- Komunjer, Ivana, 2002. "Quasi-Maximum Likelihood Estimation for Conditional Quantiles," Working Papers 1139, California Institute of Technology, Division of the Humanities and Social Sciences.
- Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
- Ngai Chan & Rongmao Zhang, 2009. "M-estimation in nonparametric regression under strong dependence and infinite variance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 391-411, June.
More about this item
Keywords
Dynamical systems; lasso estimation; model selection; inference for stochastic pro-cesses; diffusion processes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2010-12. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEMM Working Papers (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.