IDEAS home Printed from https://ideas.repec.org/p/max/cprwps/240.html
   My bibliography  Save this paper

Robust Dynamic Panel Data Models Using 𝛆𝛆-Contamination

Author

Listed:

Abstract

This paper extends the work of Baltagi et al. (2018) to the popular dynamic panel data model. We investigate the robustness of Bayesian panel data models to possible misspecification of the prior distribution. The proposed robust Bayesian approach departs from the standard Bayesian framework in two ways. First, we consider the ε-contamination class of prior distributions for the model parameters as well as for the individual effects. Second, both the base elicited priors and the ε-contamination priors use Zellner (1986)'s g-priors for the variance-covariance matrices. We propose a general "toolbox" for a wide range of specifications which includes the dynamic panel model with random effects, with cross- correlated effects à la Chamberlain, for the Hausman-Taylor world and for dynamic panel data models with homogeneous/heterogeneous slopes and cross-sectional dependence. Using a Monte Carlo simulation study, we compare the finite sample properties of our proposed estimator to those of standard classical estimators. The paper contributes to the dynamic panel data literature by proposing a general robust Bayesian framework which encompasses the conventional frequentist specifications and their associated estimation methods as special cases.

Suggested Citation

  • Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2021. "Robust Dynamic Panel Data Models Using 𝛆𝛆-Contamination," Center for Policy Research Working Papers 240, Center for Policy Research, Maxwell School, Syracuse University.
  • Handle: RePEc:max:cprwps:240
    as

    Download full text from publisher

    File URL: https://surface.syr.edu/cpr/292/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2018. "Robust linear static panel data models using ε-contamination," Journal of Econometrics, Elsevier, vol. 202(1), pages 108-123.
    2. McLachlan, Geoff & Lee, Sharon X, 2013. "EMMIXuskew: An R Package for Fitting Mixtures of Multivariate Skew t Distributions via the EM Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i12).
    3. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, January.
    4. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    5. Shrivastava, Arvind & Chaturvedi, Anoop & Bhatti, M. Ishaq, 2019. "Robust Bayesian analysis of a multivariate dynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
    6. repec:dau:papers:123456789/1908 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. Ben Moummad & E. Ezzahid & A. Zoglat, 2023. "The impact of capital goods prices on Africa's economic performance," South African Journal of Economics, Economic Society of South Africa, vol. 91(1), pages 68-84, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2022. "Robust Dynamic Space-Time Panel Data Models Using ?-Contamination: An Application to Crop Yields and Climate Change," IZA Discussion Papers 15815, Institute of Labor Economics (IZA).
    2. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Panel Data Models Usingε-Contamination," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Panel Modeling, Micro Applications, and Econometric Methodology, volume 43, pages 307-336, Emerald Group Publishing Limited.
    3. Wraith, Darren & Forbes, Florence, 2015. "Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 61-73.
    4. Ulrike Illmann & Jan Kluge, 2021. "Halb voll oder halb leer? Zur Bedeutung flächendeckender öffentlicher Ladeinfrastruktur für die Entwicklung der Elektromobilität," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 28(05), pages 10-17, October.
    5. Gangopadhyay, Partha & Jain, Siddharth & Bakry, Walid, 2022. "In search of a rational foundation for the massive IT boom in the Australian banking industry: Can the IT boom really drive relationship banking?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    6. Victor Pontines & Reza Y. Siregar, 2017. "Non-core liabilities and monetary policy transmission in Indonesia during the post-2007 global financial crisis," CAMA Working Papers 2017-78, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    7. Sun, Yunpeng & Tian, Wenjuan & Mehmood, Usman & Zhang, Xiaoyu & Tariq, Salman, 2023. "How do natural resources, urbanization, and institutional quality meet with ecological footprints in the presence of income inequality and human capital in the next eleven countries?," Resources Policy, Elsevier, vol. 85(PA).
    8. Dierk Herzer, 2024. "A panel data analysis of the long-run effect of environmental taxes on R&D expenditures at the macro-level," Economics Bulletin, AccessEcon, vol. 44(3), pages 1169-1180.
    9. Bin Amin, Sakib & Taghizadeh-Hesary, Farhad & Khan, Farhan & Manal Rahman, Faria, 2024. "Does technology have a lead or lag role in economic growth? The case of selected resource-rich and resource-scarce countries," Resources Policy, Elsevier, vol. 89(C).
    10. Li, Xinqiang & Wang, Cheng, 2024. "Clean Energy's influence on the mineral resource market in the ASEAN region," Resources Policy, Elsevier, vol. 91(C).
    11. Fatma Erdem & Erdal Özmen, 2015. "Exchange Rate Regimes and Business Cycles: An Empirical Investigation," Open Economies Review, Springer, vol. 26(5), pages 1041-1058, November.
    12. Thomaidis, Nikolaos S. & Biskas, Pandelis N., 2021. "Fundamental pricing laws and long memory effects in the day-ahead power market," Energy Economics, Elsevier, vol. 100(C).
    13. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    14. Degirmenci, Tunahan & Yavuz, Hakan, 2024. "Environmental taxes, R&D expenditures and renewable energy consumption in EU countries: Are fiscal instruments effective in the expansion of clean energy?," Energy, Elsevier, vol. 299(C).
    15. Stephen Taiwo Onifade & Bright Akwasi Gyamfi & Ilham Haouas & Simplice A. Asongu, 2024. "Extending the frontiers of financial development for sustainability of the MENA states: The roles of resource abundance and institutional quality," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(3), pages 1971-1986, June.
    16. Ryan H. Murphy & Colin O’Reilly, 2023. "Freedom through taxation: the effect of fiscal capacity on the rule of law," European Journal of Law and Economics, Springer, vol. 56(1), pages 69-90, August.
    17. Jamus Jerome Lim, 2021. "The limits of central bank independence for inflation performance," Public Choice, Springer, vol. 186(3), pages 309-335, March.
    18. Chen, Liang & Guo, Yirong, 2023. "The drivers of sustainable development: Natural resources extraction and education for low-middle- and high-income countries," Resources Policy, Elsevier, vol. 86(PB).
    19. Ma, Yechi & Chen, Zhiguo & Shinwari, Riazullah & Khan, Zeeshan, 2021. "Financialization, globalization, and Dutch disease: Is Dutch disease exist for resources rich countries?," Resources Policy, Elsevier, vol. 72(C).
    20. Erdogan, Sinan & Pata, Ugur Korkut & Kartal, Mustafa Tevfik, 2024. "The effectiveness of geopolitical risk, load capacity factor, and urbanization on natural resource rent: Evidence from top ten oil supplier countries," Resources Policy, Elsevier, vol. 96(C).

    More about this item

    Keywords

    Dynamic Model; ε-Contamination; g-Priors; Type-II Maximum Likelihood Posterior Density; Panel Data; Robust Bayesian Estimator; Two-Stage Hierarchy;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:max:cprwps:240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Katrina Fiacchi (email available below). General contact details of provider: https://edirc.repec.org/data/cpsyrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.