IDEAS home Printed from https://ideas.repec.org/p/max/cprwps/131.html
   My bibliography  Save this paper

Testing for Instability in Covariance Structures

Author

Abstract

We propose a test for the stability over time of the covariance matrix of multivariate time series. The analysis is extended to the eigensystem to ascertain changes due to instability in the eigenvalues and/or eigenvectors. Using strong Invariance Principle and Law of Large Numbers, we normalize the CUSUM-type statistics to calculate their supremum over the whole sample. The power properties of the test versus local alternatives and alternatives close to the beginning/end of sample are investigated theoretically and via simulation. The testing procedure is validated through an application to 18 US interest rates over 1997-2011, finding instability at the end-2007/beginning-2008. Key Words: Covariance Matrix, Eigensystem, Changepoint, Term Structure of Interest Rates, CUSUM statistic JEL No. C1, C22, C5

Suggested Citation

  • Chihwa Kao & Lorenzo Trapani & Giovanni Urga, 2012. "Testing for Instability in Covariance Structures," Center for Policy Research Working Papers 131, Center for Policy Research, Maxwell School, Syracuse University.
  • Handle: RePEc:max:cprwps:131
    as

    Download full text from publisher

    File URL: https://surface.syr.edu/cpr/160/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    2. Carriero, A. & Kapetanios, G. & Marcellino, M., 2009. "Forecasting exchange rates with a large Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
    3. Castle, Jennifer L. & Fawcett, Nicholas W.P. & Hendry, David F., 2010. "Forecasting with equilibrium-correction models during structural breaks," Journal of Econometrics, Elsevier, vol. 158(1), pages 25-36, September.
    4. Aue, Alexander & Horváth, Lajos & Hušková, Marie, 2012. "Segmenting mean-nonstationary time series via trending regressions," Journal of Econometrics, Elsevier, vol. 168(2), pages 367-381.
    5. Jushan Bai, 2000. "Vector Autoregressive Models with Structural Changes in Regression Coefficients and in Variance-Covariance Matrices," Annals of Economics and Finance, Society for AEF, vol. 1(2), pages 303-339, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    2. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2015. "Inference on factor structures in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 184(1), pages 145-157.
    3. Michal Pešta, 2021. "Changepoint in Error-Prone Relations," Mathematics, MDPI, vol. 9(1), pages 1-25, January.
    4. Lorenzo Trapani, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 283-286, June.
    5. Marco R. Barassi & Nicola Spagnolo & Yuqian Zhao, 2018. "Fractional Integration Versus Structural Change: Testing the Convergence of $$\hbox {CO}_{2}$$ CO 2 Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(4), pages 923-968, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    2. Ye Li & Pierre Perron, 2017. "Inference on locally ordered breaks in multiple regressions," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 289-353, March.
    3. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    4. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 259-274.
    5. Bruno Damásio & João Nicolau, 2020. "Time Inhomogeneous Multivariate Markov Chains: Detecting and Testing Multiple Structural Breaks Occurring at Unknown," Working Papers REM 2020/0136, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    6. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," LSE Research Online Documents on Economics 68839, London School of Economics and Political Science, LSE Library.
    7. Javier Hidalgo & Marcia M Schafgans, 2015. "Inference and Testing Breaks in Large Dynamic Panels with Strong Cross Sectional Dependence," STICERD - Econometrics Paper Series /2015/583, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    8. Marie Hušková & Zuzana Prášková & Josef G. Steinebach, 2022. "Estimating a gradual parameter change in an AR(1)-process," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 771-808, October.
    9. Ye Li & Pierre Perron, 2013. "Inference Related to Locally Ordered and Common Breaks in a Multivariate System with Joined Segmented Trends," Boston University - Department of Economics - Working Papers Series 2013-010, Boston University - Department of Economics.
    10. Damásio, Bruno & Nicolau, João, 2024. "Time inhomogeneous multivariate Markov chains: Detecting and testing multiple structural breaks occurring at unknown dates," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    11. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    12. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    13. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    14. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    15. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    16. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    17. Michelacci, Claudio & Zaffaroni, Paolo, 2000. "(Fractional) beta convergence," Journal of Monetary Economics, Elsevier, vol. 45(1), pages 129-153, February.
    18. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    19. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    20. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.

    More about this item

    Keywords

    covariance matrix; eigensystem; changepoint; term structure of interest rates; cusum statistic jel no. c1; c22; c5;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:max:cprwps:131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Katrina Fiacchi (email available below). General contact details of provider: https://edirc.repec.org/data/cpsyrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.