Forecasting Market Diffusion of Innovative Battery-Electric and Conventional Vehicles in Germany under Model Uncertainty
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wan, Shui Ki & Song, Haiyan, 2018. "Forecasting turning points in tourism growth," Annals of Tourism Research, Elsevier, vol. 72(C), pages 156-167.
- Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
- Hackbarth, André & Madlener, Reinhard, 2016.
"Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
- Hackbarth, André & Madlener, Reinhard, 2013. "Willingness-to-Pay for Alternative Fuel Vehicle Characteristics: A Stated Choice Study for Germany," FCN Working Papers 20/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
- Birgitte Andersen, 1999. "The hunt for S-shaped growth paths in technological innovation: a patent study," Journal of Evolutionary Economics, Springer, vol. 9(4), pages 487-526.
- Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
- S. Vieira & R. Hoffmann, 1977. "Comparison of the Logistic and the Gompertz Growth Functions Considering Additive and Multiplicative Error Terms," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(2), pages 143-148, June.
- de Haan, Peter & Mueller, Michel G. & Scholz, Roland W., 2009. "How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars--Part II: Forecasting effects of feebates based on energy-efficiency," Energy Policy, Elsevier, vol. 37(3), pages 1083-1094, March.
- Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
- Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Corey Ducharme & Bruno Agard & Martin Trépanier, 2024. "Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1661-1681, August.
- Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
- Rahmani, Djamel & Loureiro, Maria L., 2019. "Assessing drivers’ preferences for hybrid electric vehicles (HEV) in Spain," Research in Transportation Economics, Elsevier, vol. 73(C), pages 89-97.
- Karsten Kieckhäfer & Thomas Volling & Thomas Stefan Spengler, 2014. "A Hybrid Simulation Approach for Estimating the Market Share Evolution of Electric Vehicles," Transportation Science, INFORMS, vol. 48(4), pages 651-670, November.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
- Gómez Vilchez, Jonatan J. & Jochem, Patrick, 2019. "Simulating vehicle fleet composition: A review of system dynamics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Beck, Matthew J. & Rose, John M. & Hensher, David A., 2013. "Environmental attitudes and emissions charging: An example of policy implications for vehicle choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 171-182.
- Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
- Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
- Colin Singleton & Peter Grindrod, 2021. "Forecasting for Battery Storage: Choosing the Error Metric," Energies, MDPI, vol. 14(19), pages 1-11, October.
- Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2022. "A systematic review of the agent-based modelling/simulation paradigm in mobility transition," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
- Dominik Martin & Philipp Spitzer & Niklas Kuhl, 2020. "A New Metric for Lumpy and Intermittent Demand Forecasts: Stock-keeping-oriented Prediction Error Costs," Papers 2004.10537, arXiv.org.
- Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
- Azadeh Ahkamiraad & Yong Wang, 2018. "An Agent-Based Model for Zip-Code Level Diffusion of Electric Vehicles and Electricity Consumption in New York City," Energies, MDPI, vol. 11(3), pages 1-17, March.
- Dedehayir, Ozgur & Steinert, Martin, 2016. "The hype cycle model: A review and future directions," Technological Forecasting and Social Change, Elsevier, vol. 108(C), pages 28-41.
- Ducharme, Corey & Agard, Bruno & Trépanier, Martin, 2021. "Forecasting a customer's Next Time Under Safety Stock," International Journal of Production Economics, Elsevier, vol. 234(C).
- Li, Wenbo & Long, Ruyin & Chen, Hong & Geng, Jichao, 2017. "A review of factors influencing consumer intentions to adopt battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 318-328.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
More about this item
Keywords
Growth Curves; Bass Diffusion Model; Pooled Forecasting; Model Uncertainty; Electric Vehicles;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2022-03-28 (Energy Economics)
- NEP-FOR-2022-03-28 (Forecasting)
- NEP-TRE-2022-03-28 (Transport Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mar:magkse:202209. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bernd Hayo (email available below). General contact details of provider: https://edirc.repec.org/data/vamarde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.