IDEAS home Printed from https://ideas.repec.org/p/lvl/creacr/2018-01.html
   My bibliography  Save this paper

Carbon Tax Saliency: The Case of B.C. Diesel Demand

Author

Listed:
  • Maral Kichian

Abstract

In 2008, the government of the province of British Columbia broke new ground in North America by introducing a revenue-neutral carbon tax on fossil fuels. The initial rate was set at $10/ton of CO2 which was then increased annually by $5 increments to reach $30/ton in 2012. We focus on monthly diesel use which is mostly related to commercial activities. Our objective is to measure user reaction to the new tax. Exploiting the sample time series properties, we study the long run reaction via a cointegration equation, linking diesel use, its total price, and income, and the short run reaction using an error correction model (ECM). Carbon tax saliency is interpreted as a short run phenomenon that shows up in the dynamic adjustment of the ECM. We find that the long run total price elasticity estimate of diesel demand is -0.52 and that the short run tax saliency effect is statistically significant. However, the total reaction is small relative to CanadaÕs commitment to decrease GHG emissions by 30% in 2030 relative to 2005 levels.

Suggested Citation

  • Maral Kichian, 2018. "Carbon Tax Saliency: The Case of B.C. Diesel Demand," Cahiers de recherche CREATE 2018-01, CREATE.
  • Handle: RePEc:lvl:creacr:2018-01
    as

    Download full text from publisher

    File URL: https://www.create.ulaval.ca/sites/create.ulaval.ca/files/Publications/create2018-1-bernardkichian.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Coglianese & Lucas W. Davis & Lutz Kilian & James H. Stock, 2017. "Anticipation, Tax Avoidance, and the Price Elasticity of Gasoline Demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 1-15, January.
    2. Raj Chetty & Adam Looney & Kory Kroft, 2009. "Salience and Taxation: Theory and Evidence," American Economic Review, American Economic Association, vol. 99(4), pages 1145-1177, September.
    3. Barla, Philippe & Gilbert-Gonthier, Mathieu & Kuelah, Jean-René Tagne, 2014. "The demand for road diesel in Canada," Energy Economics, Elsevier, vol. 43(C), pages 316-322.
    4. Lucas W. Davis & Lutz Kilian, 2011. "Estimating the effect of a gasoline tax on carbon emissions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(7), pages 1187-1214, November.
    5. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    6. John T. Cuddington & Leila Dagher, 2015. "Estimating Short and Long-Run Demand Elasticities: A Primer with Energy-Sector Applications," The Energy Journal, , vol. 36(1), pages 185-210, January.
    7. Dahl, Carol A., 2012. "Measuring global gasoline and diesel price and income elasticities," Energy Policy, Elsevier, vol. 41(C), pages 2-13.
    8. Murray, Brian & Rivers, Nicholas, 2015. "British Columbia’s revenue-neutral carbon tax: A review of the latest “grand experiment” in environmental policy," Energy Policy, Elsevier, vol. 86(C), pages 674-683.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ott, Laurent & Weber, Sylvain, 2022. "How effective is carbon taxation on residential heating demand? A household-level analysis," Energy Policy, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Thomas Bernard & Maral Kichian, 2017. "Carbon Tax Saliency: The Case of B.C. Diesel Demand," Working Papers 1718E, University of Ottawa, Department of Economics.
    2. Bernard, Jean-Thomas & Kichian, Maral, 2019. "The long and short run effects of British Columbia's carbon tax on diesel demand," Energy Policy, Elsevier, vol. 131(C), pages 380-389.
    3. Bajo-Buenestado, Raúl, 2016. "Evidence of asymmetric behavioral responses to changes in gasoline prices and taxes for different fuel types," Energy Policy, Elsevier, vol. 96(C), pages 119-130.
    4. repec:diw:diwwpp:dp2041 is not listed on IDEAS
    5. Pier Basaglia & Sophie M. Behr & Moritz A. Drupp, 2023. "De-Fueling Externalities: Causal Effects of Fuel Taxation and Mediating Mechanisms for Reducing Climate and Pollution Costs," CESifo Working Paper Series 10508, CESifo.
    6. Mattauch, Linus & van den Bijgaart, Inge & Klenert, David & Sulikova, Simona, 2020. "Optimal fuel taxation with suboptimal health choices," INET Oxford Working Papers 2020-22, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    7. Chuang, Shih-Hsien, 2024. "Behavioral optimization of US air travel taxes," Research in Transportation Economics, Elsevier, vol. 105(C).
    8. M. Adam & O. Bonnet & E. Fize & T. Loisel & M. Rault & L. Wilner, 2023. "How does fuel demand respond to price changes? Quasi-experimental evidence based on high-frequency data," Documents de Travail de l'Insee - INSEE Working Papers 2023-17, Institut National de la Statistique et des Etudes Economiques.
    9. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
    10. Ander Iraizoz & José M Labeaga, 2022. "Incidence and Avoidance Effects of Spatial Fuel Tax Differentials: Evidence using Regional Tax Variation in Spain," Working Papers halshs-03789430, HAL.
    11. John Coglianese & Lucas W. Davis & Lutz Kilian & James H. Stock, 2017. "Anticipation, Tax Avoidance, and the Price Elasticity of Gasoline Demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 1-15, January.
    12. Kilian, Lutz & Zhou, Xiaoqing, 2024. "Heterogeneity in the pass-through from oil to gasoline prices: A new instrument for estimating the price elasticity of gasoline demand," Journal of Public Economics, Elsevier, vol. 232(C).
    13. Sen, Suphi & Vollebergh, Herman, 2018. "The effectiveness of taxing the carbon content of energy consumption," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 74-99.
    14. Lanz, Bruno & Wurlod, Jules-Daniel & Panzone, Luca & Swanson, Timothy, 2018. "The behavioral effect of Pigovian regulation: Evidence from a field experiment," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 190-205.
    15. Lin Zhao, 2023. "The impact of China's Differential Electricity Pricing policy on fossil fuel consumption," International Studies of Economics, John Wiley & Sons, vol. 18(1), pages 97-119, March.
    16. Tilov, Ivan & Weber, Sylvain, 2023. "Heterogeneity in price elasticity of vehicle kilometers traveled: Evidence from micro-level panel data," Energy Economics, Elsevier, vol. 127(PA).
    17. Ott, Laurent & Weber, Sylvain, 2022. "How effective is carbon taxation on residential heating demand? A household-level analysis," Energy Policy, Elsevier, vol. 160(C).
    18. Michael Bates & Seolah Kim, 2019. "Per-Cluster Instrumental Variables Estimation: Uncovering the Price Elasticity of the Demand for Gasoline," Working Papers 202003, University of California at Riverside, Department of Economics.
    19. Allcott, Hunt & Mullainathan, Sendhil & Taubinsky, Dmitry, 2014. "Energy policy with externalities and internalities," Journal of Public Economics, Elsevier, vol. 112(C), pages 72-88.
    20. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    21. Nicholas Rivers & Brandon Schaufele, 2012. "Carbon Tax Salience and Gasoline Demand," Working Papers 1211E, University of Ottawa, Department of Economics.

    More about this item

    Keywords

    diesel demand; carbon tax; tax saliency;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:creacr:2018-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuel Paradis (email available below). General contact details of provider: https://edirc.repec.org/data/calvlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.