IDEAS home Printed from https://ideas.repec.org/p/lvl/creacr/2016-2.html
   My bibliography  Save this paper

Agricultural production and pollutant runoffs in QuŽbecÕs Chaudi re river watershed: what are the potential environmental gains?

Author

Listed:
  • Lota D. Tamini
  • Bruno Larue
  • Gale E. West
  • Moise K.Ndegue Fongue

Abstract

Despite imposition of strict environmental standards in Quebec, the impact of agricultural activities on water quality remains a concern, particularly in the Chaudi re-Appalaches region.This regionÕs intensive animal and plant productions lead to excess phosphorus, nitrogen and sediments.This paper analyzes the environmental efficiency of agricultural producers in the Chaudi re river watershed, located south of Quebec City. We adopt a stochastic approach applied to parametric distance functions to data collected from 210 farms. Results show that, on average, crop producers are more efficient than livestock producers. In terms of emissions of phosphorus and nitrogen, the environmental efficiencies of producers are similar, at 0.804 and 0.820 respectively.For sediment runoff, however, the environmental efficiencies are lower on average, at 0736. Overall, the agricultural producers from this watershed could have achieved productivity gains in excess of 20%, while simultaneously reducing their emissions of pollutants.

Suggested Citation

  • Lota D. Tamini & Bruno Larue & Gale E. West & Moise K.Ndegue Fongue, 2016. "Agricultural production and pollutant runoffs in QuŽbecÕs Chaudi re river watershed: what are the potential environmental gains?," Cahiers de recherche CREATE 2016-2, CREATE.
  • Handle: RePEc:lvl:creacr:2016-2
    as

    Download full text from publisher

    File URL: https://www.create.ulaval.ca/sites/create.ulaval.ca/files/Publications/taminietal2016-2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lansink, Alfons Oude & Reinhard, Stijn, 2004. "Investigating technical efficiency and potential technological change in Dutch pig farming," Agricultural Systems, Elsevier, vol. 79(3), pages 353-367, March.
    2. Fernandez C. & Koop G. & Steel M.F.J., 2002. "Multiple-Output Production With Undesirable Outputs: An Application to Nitrogen Surplus in Agriculture," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 432-442, June.
    3. Tamini, Lota D., 2011. "A nonparametric analysis of the impact of agri-environmental advisory activities on best management practice adoption: A case study of Québec," Ecological Economics, Elsevier, vol. 70(7), pages 1363-1374, May.
    4. Atkinson, Scott E. & Dorfman, Jeffrey H., 2005. "Bayesian measurement of productivity and efficiency in the presence of undesirable outputs: crediting electric utilities for reducing air pollution," Journal of Econometrics, Elsevier, vol. 126(2), pages 445-468, June.
    5. Cuesta, Rafael A. & Lovell, C.A. Knox & Zofío, José L., 2009. "Environmental efficiency measurement with translog distance functions: A parametric approach," Ecological Economics, Elsevier, vol. 68(8-9), pages 2232-2242, June.
    6. Catherine J. Morrison Paul & Warren E. Johnston & Gerald A. G. Frengley, 2000. "Efficiency in New Zealand Sheep and Beef Farming: The Impacts of Regulatory Reform," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 325-337, May.
    7. Fernandez, Carmen & Koop, Gary & Steel, Mark, 2000. "A Bayesian analysis of multiple-output production frontiers," Journal of Econometrics, Elsevier, vol. 98(1), pages 47-79, September.
    8. S Reinhard & G Thijssen, 2000. "Nitrogen efficiency of Dutch dairy farms: a shadow cost system approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 27(2), pages 167-186, June.
    9. Lota D. Tamini & Bruno Larue & Gale West, 2012. "Technical and environmental efficiencies and best management practices in agriculture," Applied Economics, Taylor & Francis Journals, vol. 44(13), pages 1659-1672, May.
    10. Lau, Lawrence J, 1972. "Profit Functions of Technologies with Multiple Inputs and Outputs," The Review of Economics and Statistics, MIT Press, vol. 54(3), pages 281-289, August.
    11. Pascal L. Ghazalian & Bruno Larue & Gale E. West, 2010. "Best Management Practices and the Production of Good and Bad Outputs," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(3), pages 283-302, September.
    12. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    13. Galanopoulos, Konstantinos & Aggelopoulos, Stamatis & Kamenidou, Irene & Mattas, Konstadinos, 2006. "Assessing the effects of managerial and production practices on the efficiency of commercial pig farming," Agricultural Systems, Elsevier, vol. 88(2-3), pages 125-141, June.
    14. Ghazalian, Pascal L. & Larue, Bruno & West, Gale E., 2009. "Best Management Practices to Enhance Water Quality: Who is Adopting Them?," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 41(3), pages 1-20, December.
    15. Yélou, Clément & Larue, Bruno & Tran, Kien C., 2010. "Threshold effects in panel data stochastic frontier models of dairy production in Canada," Economic Modelling, Elsevier, vol. 27(3), pages 641-647, May.
    16. Battese, George E., 1992. "Frontier production functions and technical efficiency: a survey of empirical applications in agricultural economics," Agricultural Economics, Blackwell, vol. 7(3-4), pages 185-208, October.
    17. Paul, Catherine J. Morrison & Nehring, Richard, 2005. "Product diversification, production systems, and economic performance in U.S. agricultural production," Journal of Econometrics, Elsevier, vol. 126(2), pages 525-548, June.
    18. Stijn Reinhard & C.A. Knox Lovell & Geert Thijssen, 1999. "Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 44-60.
    19. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    20. Roberto Mosheim & C.A. Knox Lovell, 2007. "Scale Economies and Inefficiency of U.S. Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(3), pages 777-794.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ndegue Fongue, M.K., 2014. "Efficiences technique et environnementale en agriculture: le cas du bassin de la rivière Chaudière au Québec," Working Papers 187234, University of Laval, Center for Research on the Economics of the Environment, Agri-food, Transports and Energy (CREATE).
    2. M.K. Ndegue Fongue & Lota D. Tamini & B. Larue & G.E. West, 2014. "Efficiences technique et environnementale en agriculture: le cas du bassin de la rivière Chaudière au Québec," Cahiers de recherche CREATE 2014-10, CREATE.
    3. Lota D. Tamini & Bruno Larue & Gale West, 2012. "Technical and environmental efficiencies and best management practices in agriculture," Applied Economics, Taylor & Francis Journals, vol. 44(13), pages 1659-1672, May.
    4. Wei Huang & Bernhard Bruemmer, 2017. "Balancing economic revenue and grazing pressure of livestock grazing on the Qinghai–Tibetan–Plateau," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(4), pages 645-662, October.
    5. Huang, Wei & Bruemmer, Bernhard & Huntsinger, Lynn, 2016. "Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China," Ecological Economics, Elsevier, vol. 122(C), pages 1-11.
    6. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    7. Emir Malikov & Raushan Bokusheva & Subal C. Kumbhakar, 2018. "A hedonic-output-index-based approach to modeling polluting technologies," Empirical Economics, Springer, vol. 54(1), pages 287-308, February.
    8. Gary Koop & Lise Tole, 2008. "What is the environmental performance of firms overseas? An empirical investigation of the global gold mining industry," Journal of Productivity Analysis, Springer, vol. 30(2), pages 129-143, October.
    9. Begin, Rosemarie & Tamini, Lota D. & Doyon, Maurice, 2014. "L'effet du travail hors-ferme sur l'efficacité technique des fermes laitières québécoises: un modèle intégrant les biais de sélection sur les observables et inobservables," Working Papers 187233, University of Laval, Center for Research on the Economics of the Environment, Agri-food, Transports and Energy (CREATE).
    10. Cuesta, Rafael A. & Lovell, C.A. Knox & Zofío, José L., 2009. "Environmental efficiency measurement with translog distance functions: A parametric approach," Ecological Economics, Elsevier, vol. 68(8-9), pages 2232-2242, June.
    11. Areal, Francisco J. & Tiffin, Richard & Balcombe, Kelvin G., 2012. "Provision of environmental output within a multi-output distance function approach," Ecological Economics, Elsevier, vol. 78(C), pages 47-54.
    12. Holtkamp, A.M. & Brummer, B., 2018. "Environmental efficiency of smallholder rubber production," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277518, International Association of Agricultural Economists.
    13. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2016. "The good, the bad and the technology: Endogeneity in environmental production models," Journal of Econometrics, Elsevier, vol. 190(2), pages 315-327.
    14. Emir Malikov & Subal C. Kumbhakar & Efthymios G. Tsionas, 2015. "Bayesian Approach to Disentangling Technical and Environmental Productivity," Econometrics, MDPI, vol. 3(2), pages 1-23, June.
    15. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007. "Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers," Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
    16. Graham, Mary, 2009. "Developing a social perspective to farm performance analysis," Ecological Economics, Elsevier, vol. 68(8-9), pages 2390-2398, June.
    17. Gbemay Singbo, Alphonse & Larue, Bruno, 2014. "Scale Economies and Technical Efficiency of Quebec Dairy Farms," Working Papers 182482, University of Laval, Center for Research on the Economics of the Environment, Agri-food, Transports and Energy (CREATE).
    18. Graham, Mary, 2008. "Biophysical Modelling and Performance Measurement," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 6773, Australian Agricultural and Resource Economics Society.
    19. Anthony J. Glass & Karligash Kenjegalieva & Robin Sickles, 2012. "The Effects of Efficiency and TFP Growth on Nitrogen and Sulphur Emissions in Europe: A Multistage Spatial Analysis," Discussion Paper Series 2012_11, Department of Economics, Loughborough University, revised Oct 2012.
    20. repec:rim:rimwps:26-07 is not listed on IDEAS
    21. Njuki, Eric & Bravo-Ureta, Boris, 2014. "A Bayesian Approach to Analyzing the Economic Costs of Environmental Regulation in U.S. Dairy Farming," Working Papers 33, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.

    More about this item

    Keywords

    Hyperbolic distance function; Stochastic frontier analysis; Environmental efficiency;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:creacr:2016-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuel Paradis (email available below). General contact details of provider: https://edirc.repec.org/data/calvlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.