IDEAS home Printed from https://ideas.repec.org/p/ltv/wpaper/200802.html
   My bibliography  Save this paper

Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product

Author

Listed:
  • Viktors Ajevskis

    (Bank of Latvia)

  • Gundars Davidsons

    (Bank of Latvia)

Abstract

The study aims at evaluating how useful the application of models using large panels of data in forecasting Latvia's GDP is. Two factor models have been used: the Stock-Watson factor model and the generalised dynamic factor model. The forecast findings by the two models have been compared with the results obtained by the benchmark autoregressive model. The results suggest that compared with simpler autoregressive models both the Stock-Watson factor model and the generalised dynamic factor model ensure forecast improvement, which, however, has not been statistically significant if statistical tests are used.

Suggested Citation

  • Viktors Ajevskis & Gundars Davidsons, 2008. "Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product," Working Papers 2008/02, Latvijas Banka.
  • Handle: RePEc:ltv:wpaper:200802
    as

    Download full text from publisher

    File URL: https://www.bank.lv/public_files/images/img_lb/izdevumi/english/citas/wp_2008-2_ajevskis-davidsons.pdf
    Download Restriction: no

    File URL: https://www.macroeconomics.lv/sites/default/files/wp_2008-2_ajevskis-davidsons.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Schneider & Martin Spitzer, 2004. "Forecasting Austrian GDP using the generalized dynamic factor model," Working Papers 89, Oesterreichische Nationalbank (Austrian Central Bank).
    2. Danny Quah & Thomas J. Sargent, 1993. "A Dynamic Index Model for Large Cross Sections," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 285-310, National Bureau of Economic Research, Inc.
    3. repec:onb:oenbwp:y::i:89:b:1 is not listed on IDEAS
    4. Jörg Breitung & Sandra Eickmeier, 2006. "Dynamic Factor Models," Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 3, pages 25-40, Springer.
    5. Troy D. Matheson, 2006. "Factor Model Forecasts for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 2(2), May.
    6. William T. Gavin & Kevin L. Kliesen, 2008. "Forecasting inflation and output: comparing data-rich models with simple rules," Review, Federal Reserve Bank of St. Louis, vol. 90(May), pages 175-192.
    7. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    8. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    9. Marcellino, Massimiliano & Banerjee, Anindya & Masten, Igor, 2005. "Forecasting macroeconomic variables for the new member states of the European Union," Working Paper Series 482, European Central Bank.
    10. Christophe Van Nieuwenhuyze, 2006. "A generalised dynamic factor model for the Belgian economy - Useful business cycle indicators and GDP growth forecasts," Working Paper Research 80, National Bank of Belgium.
    11. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    12. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    13. Antonello D’ Agostino & Domenico Giannone, 2012. "Comparing Alternative Predictors Based on Large‐Panel Factor Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 306-326, April.
    14. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    15. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    16. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    17. James H. Stock & Mark W. Watson, 1998. "Diffusion Indexes," NBER Working Papers 6702, National Bureau of Economic Research, Inc.
    18. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Staff Working Papers 07-8, Bank of Canada.
    19. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    20. Dreger, Christian & Schumacher, Christian, 2002. "Estimating Large-Scale Factor Models for Economic Activity in Germany: Do They Outperform Simpler Models?," Discussion Paper Series 26321, Hamburg Institute of International Economics.
    21. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    22. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    23. Christophe van Nieuwenhuyze, 2006. "A Generalized Dynamic Factor Model for the Belgian Economy: Identification of the Business Cycle and GDP Growth Forecasts," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(2), pages 213-247.
    24. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, "undated". "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    25. George Kapetanios & Gonzalo Camba-Mendez, 2005. "Forecasting euro area inflation using dynamic factor measures of underlying inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(7), pages 491-503.
    26. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
    27. Christian Gillitzer & Jonathan Kearns, 2007. "Forecasting with Factors: The Accuracy of Timeliness," RBA Research Discussion Papers rdp2007-03, Reserve Bank of Australia.
    28. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, September.
    29. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
    2. Juan Carlos Carlo Santos, 2019. "Pronósticos del PIB mediante modelos de factores dinámicos," Revista de Análisis del BCB, Banco Central de Bolivia, vol. 30(1), pages 125-174, January -.
    3. Siliverstovs Boriss & Kholodilin Konstantin A., 2012. "Assessing the Real-Time Informational Content of Macroeconomic Data Releases for Now-/Forecasting GDP: Evidence for Switzerland," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 232(4), pages 429-444, August.
    4. Buss, Ginters, 2010. "A note on GDP now-/forecasting with dynamic versus static factor models along a business cycle," MPRA Paper 22147, University Library of Munich, Germany.
    5. Konstantins Benkovskis, 2008. "Short-Term Forecasts of Latvia's Real Gross Domestic Product Growth Using Monthly Indicators," Working Papers 2008/05, Latvijas Banka.
    6. Jason Angelopoulos, 2017. "Creating and assessing composite indicators: Dynamic applications for the port industry and seaborne trade," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 126-159, March.
    7. Konstantīns Beņkovskis, 2010. "LATCOIN: determining medium to long-run tendencies of economic growth in Latvia in real time," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 10(2), pages 27-48, December.
    8. Bušs, Ginters, 2009. "Comparing forecasts of Latvia's GDP using simple seasonal ARIMA models and direct versus indirect approach," MPRA Paper 16684, University Library of Munich, Germany.
    9. Karen Poghosyan & Ruben Poghosyan, 2021. "On the Applicability of Dynamic Factor Models for Forecasting Real GDP Growth in Armenia," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(1), pages 52-79, June.
    10. Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
    11. Jason Angelopoulos & Costas I. Chlomoudis, 2017. "A Generalized Dynamic Factor Model for the U.S. Port Sector," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 67(1), pages 22-37, January-M.
    12. Daniel Armeanu & Jean Vasile Andrei & Leonard Lache & Mirela Panait, 2017. "A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    2. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    3. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    4. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Working Papers 334, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    5. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    6. António Rua & Francisco Craveiro Dias, 2008. "Determining the number of factors in approximate factor models with global and group-specific factors," Working Papers w200809, Banco de Portugal, Economics and Research Department.
    7. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
    8. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    9. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
    10. Marc Hallin & Roman Liska, 2008. "Dynamic Factors in the Presence of Block Structure," Working Papers ECARES 2008_012, ULB -- Universite Libre de Bruxelles.
    11. In Choi, 2011. "Efficient Estimation of Nonstationary Factor Models," Working Papers 1101, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Jun 2011.
    12. Jason Angelopoulos, 2017. "Creating and assessing composite indicators: Dynamic applications for the port industry and seaborne trade," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 126-159, March.
    13. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    14. Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
    15. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    16. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
    17. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
    18. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    19. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    20. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.

    More about this item

    Keywords

    forecasting; factor models; large cross section;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • E53 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Deposit Insurance

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ltv:wpaper:200802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Konstantins Benkovskis (email available below). General contact details of provider: https://edirc.repec.org/data/bolgvlv.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.