IDEAS home Printed from https://ideas.repec.org/a/blv/journl/v30y2019i1p125-174.html
   My bibliography  Save this article

Pronósticos del PIB mediante modelos de factores dinámicos

Author

Listed:
  • Juan Carlos Carlo Santos

    (Banco Central de Bolivia)

Abstract

El Instituto Nacional de Estadística de Bolivia publica los datos del Producto Interno Bruto con un retraso de entre tres y cuatro meses, reduciendo así el margen de acción de los responsables de la política económica frente a cambios imprevistos de esta variable. Ante esta necesidad, el presente documento apunta a tener estimaciones tempranas de este agregado macroeconómico mediante el uso de modelos de factores dinámicos propuestos por Stock y Watson (1988). Las series de datos incluidas en el modelo corresponden a variables relacionadas con los sectores financiero, monetario, real, y externo, incluso variables de precios. Los resultados obtenidos muestran que las estimaciones, a través de esta metodología, son más robustas en comparación con los modelos univariados y multivariados en las evaluaciones tanto dentro como fuera de la muestra.

Suggested Citation

  • Juan Carlos Carlo Santos, 2019. "Pronósticos del PIB mediante modelos de factores dinámicos," Revista de Análisis del BCB, Banco Central de Bolivia, vol. 30(1), pages 125-174, January -.
  • Handle: RePEc:blv:journl:v:30:y:2019:i:1:p:125-174
    as

    Download full text from publisher

    File URL: https://www.bcb.gob.bo/webdocs/publicacionesbcb/revista_analisis/ra_vol30/articulo_4_v30.pdf
    Download Restriction: no

    File URL: https://www.bcb.gob.bo/?q=pub_revista-analisis
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    2. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    3. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    4. Emilio Blanco & Laura D’Amato & Fiorella Dogliolo & Lorena Garegnani, 2017. "Nowcasting GDP in Argentina: Comparing the Predictive Ability of Different Models," BCRA Working Paper Series 201774, Central Bank of Argentina, Economic Research Department.
    5. Marina Emiris, 2016. "A dynamic factor model for forecasting house prices in Belgium," Working Paper Research 313, National Bank of Belgium.
    6. Deicy J. Cristiano & Manuel D. Hernández & José David Pulido, 2012. "Pronósticos de corto plazo en tiempo real para la actividad económica colombiana," Borradores de Economia 9827, Banco de la Republica.
    7. Martin Solberger & Erik Spånberg, 2020. "Estimating a Dynamic Factor Model in EViews Using the Kalman Filter and Smoother," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 875-900, March.
    8. Calista Cheung & Frédérick Demers, 2007. "Evaluating Forecasts from Factor Models for Canadian GDP Growth and Core Inflation," Staff Working Papers 07-8, Bank of Canada.
    9. António Rua & Francisco Craveiro Dias & Maximiano Pinheiro, 2014. "Forecasting Portuguese GDP with factor models," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    10. F. Javier Fernandez Macho & Andrew C. Harvey & James H. Stock, 1987. "Forecasting and Interpolation Using Vector Autoregressions with Common Trends," Annals of Economics and Statistics, GENES, issue 6-7, pages 279-287.
    11. repec:adr:anecst:y:1987:i:6-7:p:12 is not listed on IDEAS
    12. Viktors Ajevskis & Gundars Davidsons, 2008. "Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product," Working Papers 2008/02, Latvijas Banka.
    13. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    14. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    15. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    16. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    2. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    3. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    4. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    5. Petrella, Ivan & Drechsel, Thomas & Antolin-Diaz, Juan, 2014. "Following the Trend: Tracking GDP when Long-Run Growth is Uncertain," CEPR Discussion Papers 10272, C.E.P.R. Discussion Papers.
    6. Francisco J. Goerlich-Gisbert, 1999. "Shocks agregados versus shocks sectoriales. Un análisis factorial dinámico," Investigaciones Economicas, Fundación SEPI, vol. 23(1), pages 27-53, January.
    7. Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
    8. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    9. Jason Angelopoulos, 2017. "Creating and assessing composite indicators: Dynamic applications for the port industry and seaborne trade," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 126-159, March.
    10. Jason Angelopoulos & Costas I. Chlomoudis, 2017. "A Generalized Dynamic Factor Model for the U.S. Port Sector," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 67(1), pages 22-37, January-M.
    11. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    12. Mehdi Abid & Rafaa Mraihi, 2015. "Energy Consumption and Industrial Production: Evidence from Tunisia at Both Aggregated and Disaggregated Levels," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 6(4), pages 1123-1137, December.
    13. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    14. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    15. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    16. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    17. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    18. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    19. Yifan Shen & Tilak Abeysinghe, 2021. "International Transmission Mechanism And World Business Cycle," Economic Inquiry, Western Economic Association International, vol. 59(1), pages 510-531, January.
    20. Krist'of N'emeth & D'aniel Hadh'azi, 2024. "Generating density nowcasts for U.S. GDP growth with deep learning: Bayes by Backprop and Monte Carlo dropout," Papers 2405.15579, arXiv.org.

    More about this item

    Keywords

    Producto Interno Bruto; modelo de factores dinámicos; nowcasting;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:blv:journl:v:30:y:2019:i:1:p:125-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jose Antonio Caballero Pelaez (email available below). General contact details of provider: https://edirc.repec.org/data/bcbgvbo.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.