IDEAS home Printed from https://ideas.repec.org/p/lie/wpaper/59.html
   My bibliography  Save this paper

Partially heterogeneous tests for Granger non-causality in panel data

Author

Listed:
  • Arturas Juodis

    (Faculty of Economics and Business, University of Groningen)

  • Yiannis Karavias

    (Department of Economics, University of Birmingham)

Abstract

The power of Granger non-causality tests in panel data depends on the type of the alternative hypothesis: feedback from other variables might be homogeneous, homogeneous within groups or heterogeneous across different panel units. Existing tests have power against only one of these alternatives and may fail to reject the null hypothesis if the specified type of alternative is incorrect. This paper proposes a new Union-Intersections (UI) test which has correct size and good power against any type of alternative. The UI test is based on an existing test which is powerful against heterogeneous alternatives and a new Wald-type test which is powerful against homogeneous alternatives. The Wald test is designed to have good size and power properties for moderate to large time series dimensions and is based on a bias-corrected split panel jackknife-type estimator. Evidence from simulations confirm the new UI tests provide power against any direction of the alternative.

Suggested Citation

  • Arturas Juodis & Yiannis Karavias, 2019. "Partially heterogeneous tests for Granger non-causality in panel data," Bank of Lithuania Working Paper Series 59, Bank of Lithuania.
  • Handle: RePEc:lie:wpaper:59
    as

    Download full text from publisher

    File URL: https://www.lb.lt/uploads/publications/docs/21797_7c27621f48fa059220e314edb62ac957.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binder, Michael & Hsiao, Cheng & Pesaran, M. Hashem, 2005. "Estimation And Inference In Short Panel Vector Autoregressions With Unit Roots And Cointegration," Econometric Theory, Cambridge University Press, vol. 21(4), pages 795-837, August.
    2. Alexander Chudik & M. Hashem Pesaran & Jui-Chung Yang, 2016. "Half-panel jackknife fixed effects estimation of panels with weakly exogenous regressor," Globalization Institute Working Papers 281, Federal Reserve Bank of Dallas.
    3. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    4. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    5. Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016. "Identifying Latent Structures in Panel Data," Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
    6. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    7. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    8. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    9. Iván Fernández‐Val & Joonhwah Lee, 2013. "Panel data models with nonadditive unobserved heterogeneity: Estimation and inference," Quantitative Economics, Econometric Society, vol. 4(3), pages 453-481, November.
    10. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    11. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    12. Chambers, Marcus J., 2013. "Jackknife estimation of stationary autoregressive models," Journal of Econometrics, Elsevier, vol. 172(1), pages 142-157.
    13. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    14. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    15. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    16. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    17. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Unit Root Testing In Practice: Dealing With Uncertainty Over The Trend And Initial Condition," Econometric Theory, Cambridge University Press, vol. 25(3), pages 587-636, June.
    18. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    19. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    20. Yiannis Karavias & Elias Tzavalis, 2016. "Local Power of Fixed-T Panel Unit Root Tests With Serially Correlated Errors and Incidental Trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 222-239, March.
    21. Juodis, Artūras, 2013. "A note on bias-corrected estimation in dynamic panel data models," Economics Letters, Elsevier, vol. 118(3), pages 435-438.
    22. Gonçalves, Sílvia & Kaffo, Maximilien, 2015. "Bootstrap inference for linear dynamic panel data models with individual fixed effects," Journal of Econometrics, Elsevier, vol. 186(2), pages 407-426.
    23. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis, 2021. "A homogeneous approach to testing for Granger non-causality in heterogeneous panels," Empirical Economics, Springer, vol. 60(1), pages 93-112, January.
    2. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    3. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    4. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 63/13, Institute for Fiscal Studies.
    5. MAÏ ASSAN CHEDI, Maman, 2022. "Does Defence Expenditure Affect Education and Health expenditures in Saharan Africa?," African Journal of Economic Review, African Journal of Economic Review, vol. 10(4), September.
    6. Jiaqi Xiao & Artūras Juodis & Yiannis Karavias & Vasilis Sarafidis & Jan Ditzen, 2023. "Improved tests for Granger noncausality in panel data," Stata Journal, StataCorp LP, vol. 23(1), pages 230-242, March.
    7. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    8. Ivan Fernandez-Val & Martin Weidner, 2015. "Individual and time effects in nonlinear panel models with large N , T," CeMMAP working papers 17/15, Institute for Fiscal Studies.
    9. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    10. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    11. Juodis, Artūras & Sarafidis, Vasilis, 2022. "An incidental parameters free inference approach for panels with common shocks," Journal of Econometrics, Elsevier, vol. 229(1), pages 19-54.
    12. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    13. Weidner, Martin & Zylkin, Thomas, 2021. "Bias and consistency in three-way gravity models," Journal of International Economics, Elsevier, vol. 132(C).
    14. Al-Jahwari, Salim Ahmed Said, 2021. "Does the Twin-Deficits doctrine apply to the Gulf Cooperation Council? A dynamic panel VAR-X model approach," MPRA Paper 111232, University Library of Munich, Germany.
    15. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    16. Ryo Okui & Takahide Yanagi, 2020. "Kernel estimation for panel data with heterogeneous dynamics," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 156-175.
    17. Yanbo Liu & Peter C. B. Phillips & Jun Yu, 2023. "A Panel Clustering Approach To Analyzing Bubble Behavior," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(4), pages 1347-1395, November.
    18. Chen, Weihao & Cizek, Pavel, 2023. "Bias-Corrected Instrumental Variable Estimation in Linear Dynamic Panel Data Models," Discussion Paper 2023-028, Tilburg University, Center for Economic Research.
    19. Norkutė, Milda & Westerlund, Joakim, 2021. "The factor analytical approach in near unit root interactive effects panels," Journal of Econometrics, Elsevier, vol. 221(2), pages 569-590.
    20. Youssef, Ahmed & Abonazel, Mohamed R., 2015. "Alternative GMM Estimators for First-order Autoregressive Panel Model: An Improving Efficiency Approach," MPRA Paper 68674, University Library of Munich, Germany.

    More about this item

    Keywords

    Panel Data; Granger Causality; VAR;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lie:wpaper:59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Aurelija Proskute (email available below). General contact details of provider: https://edirc.repec.org/data/lbanklt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.