IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1802.08825.html
   My bibliography  Save this paper

Kernel Estimation for Panel Data with Heterogeneous Dynamics

Author

Listed:
  • Ryo Okui
  • Takahide Yanagi

Abstract

This paper proposes nonparametric kernel-smoothing estimation for panel data to examine the degree of heterogeneity across cross-sectional units. We first estimate the sample mean, autocovariances, and autocorrelations for each unit and then apply kernel smoothing to compute their density functions. The dependence of the kernel estimator on bandwidth makes asymptotic bias of very high order affect the required condition on the relative magnitudes of the cross-sectional sample size (N) and the time-series length (T). In particular, it makes the condition on N and T stronger and more complicated than those typically observed in the long-panel literature without kernel smoothing. We also consider a split-panel jackknife method to correct bias and construction of confidence intervals. An empirical application and Monte Carlo simulations illustrate our procedure in finite samples.

Suggested Citation

  • Ryo Okui & Takahide Yanagi, 2018. "Kernel Estimation for Panel Data with Heterogeneous Dynamics," Papers 1802.08825, arXiv.org, revised May 2019.
  • Handle: RePEc:arx:papers:1802.08825
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1802.08825
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    2. Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016. "Identifying Latent Structures in Panel Data," Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
    3. Pesaran, M. Hashem, 2015. "Time Series and Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780198759980.
    4. Crucini, Mario J. & Shintani, Mototsugu & Tsuruga, Takayuki, 2015. "Noisy information, distance and law of one price dynamics across US cities," Journal of Monetary Economics, Elsevier, vol. 74(C), pages 52-66.
    5. James E. Anderson & Eric van Wincoop, 2004. "Trade Costs," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 691-751, September.
    6. Yazgan, M. Ege & Yilmazkuday, Hakan, 2011. "Price-level convergence: New evidence from U.S. cities," Economics Letters, Elsevier, vol. 110(2), pages 76-78, February.
    7. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    8. Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
    9. Thibaut Lamadon & Elena Manresa & Stephane Bonhomme, 2016. "Discretizing Unobserved Heterogeneity," 2016 Meeting Papers 1536, Society for Economic Dynamics.
    10. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    11. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, January.
    12. Manuel Arellano & Stéphane Bonhomme, 2012. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 987-1020.
    13. Patrick Sevestre & Laszlo Matyas, 2008. "The Econometrics of Panel Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00279977, HAL.
    14. Klenow, Peter J. & Malin, Benjamin A., 2010. "Microeconomic Evidence on Price-Setting," Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 6, pages 231-284, Elsevier.
    15. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    16. Lee, Yoon-Jin & Okui, Ryo & Shintani, Mototsugu, 2018. "Asymptotic inference for dynamic panel estimators of infinite order autoregressive processes," Journal of Econometrics, Elsevier, vol. 204(2), pages 147-158.
    17. Jorge De La Roca & Diego Puga, 2017. "Learning by Working in Big Cities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(1), pages 106-142.
    18. Hsiao,Cheng & Pesaran,M. Hashem & Lahiri,Kajal & Lee,Lung Fei (ed.), 1999. "Analysis of Panels and Limited Dependent Variable Models," Cambridge Books, Cambridge University Press, number 9780521631693, January.
    19. Iván Fernández‐Val & Joonhwah Lee, 2013. "Panel data models with nonadditive unobserved heterogeneity: Estimation and inference," Quantitative Economics, Econometric Society, vol. 4(3), pages 453-481, November.
    20. Paul Schrimpf & Michio Suzuki & Hiroyuki Kasahara, 2015. "Identification and Estimation of Production Function with Unobserved Heterogeneity," 2015 Meeting Papers 924, Society for Economic Dynamics.
    21. Okui, Ryo, 2008. "Panel AR(1) estimators under misspecification," Economics Letters, Elsevier, vol. 101(3), pages 210-213, December.
    22. Ackerberg, Daniel & Lanier Benkard, C. & Berry, Steven & Pakes, Ariel, 2007. "Econometric Tools for Analyzing Market Outcomes," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 63, Elsevier.
    23. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    24. Parsley, David C. & Wei, Shang-Jin, 2001. "Explaining the border effect: the role of exchange rate variability, shipping costs, and geography," Journal of International Economics, Elsevier, vol. 55(1), pages 87-105, October.
    25. David C. Parsley & Shang-Jin Wei, 1996. "Convergence to the Law of One Price Without Trade Barriers or Currency Fluctuations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(4), pages 1211-1236.
    26. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    27. Mavroeidis, Sophocles & Sasaki, Yuya & Welch, Ivo, 2015. "Estimation of heterogeneous autoregressive parameters with short panel data," Journal of Econometrics, Elsevier, vol. 188(1), pages 219-235.
    28. Antonio F. Galvao & Kengo Kato, 2014. "Estimation and Inference for Linear Panel Data Models Under Misspecification When Both n and T are Large," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 285-309, April.
    29. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    30. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1.
    31. Okui Ryo, 2014. "Asymptotically Unbiased Estimation of Autocovariances and Autocorrelations with Panel Data in the Presence of Individual and Time Effects," Journal of Time Series Econometrics, De Gruyter, vol. 6(2), pages 129-181, July.
    32. Emi Nakamura & Jón Steinsson, 2008. "Five Facts about Prices: A Reevaluation of Menu Cost Models," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(4), pages 1415-1464.
    33. Okui, Ryo, 2011. "Asymptotically unbiased estimation of autocovariances and autocorrelations for panel data with incidental trends," Economics Letters, Elsevier, vol. 112(1), pages 49-52, July.
    34. Gonçalves, Sílvia & Kaffo, Maximilien, 2015. "Bootstrap inference for linear dynamic panel data models with individual fixed effects," Journal of Econometrics, Elsevier, vol. 186(2), pages 407-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurent Barras & Patrick Gagliardini & Olivier Scaillet, 2022. "Skill, Scale, and Value Creation in the Mutual Fund Industry," Journal of Finance, American Finance Association, vol. 77(1), pages 601-638, February.
    2. Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
    3. Stéphane Bonhomme & Martin Weidner, 2019. "Posterior average effects," CeMMAP working papers CWP43/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    5. Yazgan, M. Ege & Yilmazkuday, Hakan, 2011. "Price-level convergence: New evidence from U.S. cities," Economics Letters, Elsevier, vol. 110(2), pages 76-78, February.
    6. Mohd Alsaleh & A. S. Abdul-Rahim, 2022. "An evaluation of bioenergy industry sustainability impacts on forest degradation: evidence from European Union economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1738-1760, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    2. Ryo Okui, 2017. "Misspecification in Dynamic Panel Data Models and Model-Free Inferences," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 283-304, September.
    3. Fernández-Val, Iván & Gao, Wayne Yuan & Liao, Yuan & Vella, Francis, 2022. "Dynamic Heterogeneous Distribution Regression Panel Models, with an Application to Labor Income Processes," IZA Discussion Papers 15236, Institute of Labor Economics (IZA).
    4. Arturas Juodis & Yiannis Karavias, 2019. "Partially heterogeneous tests for Granger non-causality in panel data," Bank of Lithuania Working Paper Series 59, Bank of Lithuania.
    5. Lu, Xun & Su, Liangjun, 2023. "Uniform inference in linear panel data models with two-dimensional heterogeneity," Journal of Econometrics, Elsevier, vol. 235(2), pages 694-719.
    6. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    7. Joseph P. Byrne & Alexandros Kontonikas & Alberto Montagnoli, 2013. "International Evidence on the New Keynesian Phillips Curve Using Aggregate and Disaggregate Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(5), pages 913-932, August.
    8. Crucini, Mario J. & Shintani, Mototsugu & Tsuruga, Takayuki, 2015. "Noisy information, distance and law of one price dynamics across US cities," Journal of Monetary Economics, Elsevier, vol. 74(C), pages 52-66.
    9. Arturas Juodis & Simon Reese, 2018. "The Incidental Parameters Problem in Testing for Remaining Cross-section Correlation," Papers 1810.03715, arXiv.org, revised Feb 2021.
    10. Perevyshin, Yu. & Skrobotov, A., 2017. "The Price Convergence of Individual Goods in the Russian Regions," Journal of the New Economic Association, New Economic Association, vol. 35(3), pages 71-102.
    11. Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
    12. Durand, Robert B. & Greene, William H. & Harris, Mark N. & Khoo, Joye, 2022. "Heterogeneity in speed of adjustment using finite mixture models," Economic Modelling, Elsevier, vol. 107(C).
    13. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    14. Yazgan, M. Ege & Yilmazkuday, Hakan, 2011. "Price-level convergence: New evidence from U.S. cities," Economics Letters, Elsevier, vol. 110(2), pages 76-78, February.
    15. Badi H. Baltagi, 2021. "Dynamic Panel Data Models," Springer Texts in Business and Economics, in: Econometric Analysis of Panel Data, edition 6, chapter 0, pages 187-228, Springer.
    16. Zhan Gao & M. Hashem Pesaran, 2023. "Identification and estimation of categorical random coefficient models," Empirical Economics, Springer, vol. 64(6), pages 2543-2588, June.
    17. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    18. Choi, Chi-Young & Choi, Horag, 2016. "The role of two frictions in geographic price dispersion: When market friction meets nominal rigidity," Journal of International Money and Finance, Elsevier, vol. 63(C), pages 1-27.
    19. Yuya Sasaki & Takuya Ura, 2021. "Slow Movers in Panel Data," Papers 2110.12041, arXiv.org.
    20. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1802.08825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.