IDEAS home Printed from https://ideas.repec.org/p/ler/wpaper/09.07.283.html
   My bibliography  Save this paper

Economic analysis of summer fallow management to reduce take-all disease and N-leaching in a wheat crop rotation

Author

Listed:
  • Stéphane De Cara
  • Florence Jacquet
  • Arnaud Reynaud
  • Gaël Goulevant
  • Marie-Hélène Jeuffroy
  • Philippe Lucas
  • Françoise Montfort

Abstract

This paper addresses the question of summer cover crop adoption by farmers in presence of a risk of yield loss due to take-all disease and climate variability. To analyse the public incentives needed to encourage farmers to adopt summer cover crops as a means of reducing N leaching, we combine outputs from an economic, an epidemiological and an agronomic model. The economic model is a simple model of choice under uncertainty. The farmer is assumed to choose among a range of summer fallow managements and input uses on the basis of the expected utility criterion (HARA assumption) in presence of both climate and take all risks. The epidemiological model proposed by Ennaïfar et al. [1] is used to determine the impact of take all on yields and N-uptake. The crop-soil model (STICS) is used to compute yield developments and N-leaching under various management options and climatic conditions. These models are calibrated to match the conditions prevailing in Grignon, located in the main wheat-growing area in France. Eight management systems are examined: 4 summer fallow managements: ’wheat volunteers’ (WV), ’bare soil’ (BS), ’early mustard’ (EM), ’late mustard’ (LM), and 2 input intensities. We show that the optimal systems are BS (WV) when the take-all risk is (not) taken into account by agents. We then compute the minimum payment to each system such that it emerges in the optimum. We thus derive the required amounts of transfer needed to trigger catch crop adoption. The results of the Monte Carlo sensitivity analysis show that the ranking of management systems is robust over a wide range of input parameters.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Stéphane De Cara & Florence Jacquet & Arnaud Reynaud & Gaël Goulevant & Marie-Hélène Jeuffroy & Philippe Lucas & Françoise Montfort, 2009. "Economic analysis of summer fallow management to reduce take-all disease and N-leaching in a wheat crop rotation," LERNA Working Papers 09.07.283, LERNA, University of Toulouse.
  • Handle: RePEc:ler:wpaper:09.07.283
    as

    Download full text from publisher

    File URL: http://www2.toulouse.inra.fr/lerna/travaux/cahiers2009/09.07.283.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    2. Lacroix, Anne & Beaudoin, Nicolas & Makowski, David, 2005. "Agricultural water nonpoint pollution control under uncertainty and climate variability," Ecological Economics, Elsevier, vol. 53(1), pages 115-127, April.
    3. Chavas, Jean-Paul & Holt, Matthew T, 1996. "Economic Behavior under Uncertainty: A Joint Analysis of Risk Preferences and Technology," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 329-335, May.
    4. Roberts, Roland K. & Walters, Jeremy T. & Larson, James A. & English, Burton C. & Howard, Donald D., 2004. "Optimal Nitrogen Fertilization Rates in Winter Wheat Production as Affected by Risk, Disease, and Nitrogen Source," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(1), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cara, Stéphane & Goulevant, Gaël & Jacquet, Florence & Jeuffroy, Marie-Hélène & Lucas, Philippe & Montfort, Françoise & Reynaud, Arnaud, 2009. "Economic Analysis of Summer Fallow Management to Reduce Take-All and N-Leaching in a Wheat Crop Rotation," TSE Working Papers 09-043, Toulouse School of Economics (TSE).
    2. Jack Meyer, 2010. "Representing risk preferences in expected utility based decision models," Annals of Operations Research, Springer, vol. 176(1), pages 179-190, April.
    3. Ragnar Tveteras & Ola Flaten & Gudbrand Lien, 2011. "Production risk in multi-output industries: estimates from Norwegian dairy farms," Applied Economics, Taylor & Francis Journals, vol. 43(28), pages 4403-4414.
    4. Auffret, Philippe, 2001. "An alternative unifying measure of welfare gains from risk-sharing," Policy Research Working Paper Series 2676, The World Bank.
    5. Chen, An & Hieber, Peter & Sureth, Caren, 2022. "Pay for tax certainty? Advance tax rulings for risky investment under multi-dimensional tax uncertainty," arqus Discussion Papers in Quantitative Tax Research 273, arqus - Arbeitskreis Quantitative Steuerlehre.
    6. Durmaz, Tunç, 2016. "Precautionary Storage in Electricity Markets," Discussion Papers 2016/5, Norwegian School of Economics, Department of Business and Management Science.
    7. Sanchez-Romero, Miguel, 2006. "“Demand for Private Annuities and Social Security: Consequences to Individual Wealth”," Working Papers in Economic Theory 2006/07, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
    8. Andreas Fagereng & Luigi Guiso & Davide Malacrino & Luigi Pistaferri, 2020. "Heterogeneity and Persistence in Returns to Wealth," Econometrica, Econometric Society, vol. 88(1), pages 115-170, January.
    9. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    10. Luca Di Persio & Luca Prezioso & Kai Wallbaum, 2019. "Closed-End Formula for options linked to Target Volatility Strategies," Papers 1902.08821, arXiv.org.
    11. Larrain, Borja, 2011. "World betas, consumption growth, and financial integration," Journal of International Money and Finance, Elsevier, vol. 30(6), pages 999-1018, October.
    12. Song, Dandan & Wang, Huamao & Yang, Zhaojun, 2014. "Learning, pricing, timing and hedging of the option to invest for perpetual cash flows with idiosyncratic risk," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 1-11.
    13. Devereux, Michael B. & Saito, Makoto, 1997. "Growth and risk-sharing with incomplete international assets markets," Journal of International Economics, Elsevier, vol. 42(3-4), pages 453-481, May.
    14. John Y. Campbell & Luis M. Viceira & Joshua S. White, 2003. "Foreign Currency for Long-Term Investors," Economic Journal, Royal Economic Society, vol. 113(486), pages 1-25, March.
    15. repec:dau:papers:123456789/56 is not listed on IDEAS
    16. Stephen Satchell & Susan Thorp, 2007. "Scenario Analysis with Recursive Utility: Dynamic Consumption Plans for Charitable Endowments," Research Paper Series 209, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Cuoco, Domenico & Liu, Hong, 2000. "Optimal consumption of a divisible durable good," Journal of Economic Dynamics and Control, Elsevier, vol. 24(4), pages 561-613, April.
    18. Renaud Bourlès & Dominique Henriet, 2012. "Risk-sharing Contracts with Asymmetric Information," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 37(1), pages 27-56, March.
    19. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    20. Carlos Garriga & Mark P. Keightley, 2007. "A general equilibrium theory of college with education subsidies, in-school labor supply, and borrowing constraints," Working Papers 2007-051, Federal Reserve Bank of St. Louis.
    21. Orszag, J. Michael & Yang, Hong, 1995. "Portfolio choice with Knightian uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 19(5-7), pages 873-900.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ler:wpaper:09.07.283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxime MARTY (email available below). General contact details of provider: https://edirc.repec.org/data/lrtlsfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.