IDEAS home Printed from https://ideas.repec.org/p/koc/wpaper/1802.html
   My bibliography  Save this paper

Measuring Dynamic Connectedness with Large Bayesian VAR Models

Author

Listed:
  • Dimitris Korobilis

    (University of Essex)

  • Kamil Yilmaz

    (Koc University)

Abstract

We estimate a large Bayesian time-varying parameter vector autoregressive (TVP-VAR) model of daily stock return volatilities for 35 U.S. and European financial institutions. Based on that model we extract a connectedness index in the spirit of Diebold and Yilmaz (2014) (DYCI). We show that the connectedness index from the TVP-VAR model captures abrupt turning points better than the one obtained from rolling-windows VAR estimates. As the TVP-VAR based DYCI shows more pronounced jumps during important crisis moments, it captures the intensification of tensions in financial markets more accurately and timely than the rolling-windows based DYCI. Finally, we show that the TVP-VAR based index performs better in forecasting systemic events in the American and European financial sectors as well.

Suggested Citation

  • Dimitris Korobilis & Kamil Yilmaz, 2018. "Measuring Dynamic Connectedness with Large Bayesian VAR Models," Koç University-TUSIAD Economic Research Forum Working Papers 1802, Koc University-TUSIAD Economic Research Forum.
  • Handle: RePEc:koc:wpaper:1802
    as

    Download full text from publisher

    File URL: http://eaf.ku.edu.tr/sites/eaf.ku.edu.tr/files/erf_wp_1802.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    2. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    3. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    4. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    5. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    6. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
    7. Mr. Ivailo Arsov & Mr. Elie Canetti & Ms. Laura E. Kodres & Ms. Srobona Mitra, 2013. "Near-Coincident Indicators of Systemic Stress," IMF Working Papers 2013/115, International Monetary Fund.
    8. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    9. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    10. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    11. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    12. Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 179-212, National Bureau of Economic Research, Inc.
    13. Harald Uhlig, 1997. "Bayesian Vector Autoregressions with Stochastic Volatility," Econometrica, Econometric Society, vol. 65(1), pages 59-74, January.
    14. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    15. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    16. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    17. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    18. Uhlig, Harald, 1994. "What Macroeconomists Should Know about Unit Roots: A Bayesian Perspective," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 645-671, August.
    19. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamil Yilmaz, 2018. "Bank Volatility Connectedness in South East Asia," Koç University-TUSIAD Economic Research Forum Working Papers 1807, Koc University-TUSIAD Economic Research Forum.
    2. Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Commodity Connectedness," Central Banking, Analysis, and Economic Policies Book Series, in: Enrique G. Mendoza & Ernesto Pastén & Diego Saravia (ed.),Monetary Policy and Global Spillovers: Mechanisms, Effects and Policy Measures, edition 1, volume 25, chapter 4, pages 097-136, Central Bank of Chile.
    3. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    4. Ramiro Losada & Ricardo Laborda, 2020. "La interconexión en las instituciones de inversión colectiva no alternativas y el riesgo sistémico," CNMV Documentos de Trabajo CNMV Documentos de Trabaj, CNMV- Comisión Nacional del Mercado de Valores - Departamento de Estudios y Estadísticas.
    5. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    6. Brož, Václav & Kočenda, Evžen, 2022. "Mortgage-related bank penalties and systemic risk among U.S. banks," Journal of International Money and Finance, Elsevier, vol. 122(C).
    7. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
    8. Julián Andrada-Félix & Adrian Fernandez-Perez & Simón Sosvilla-Rivero, 2018. "Fear connectedness among asset classes," Applied Economics, Taylor & Francis Journals, vol. 50(39), pages 4234-4249, August.
    9. Papież, Monika & Rubaszek, Michał & Szafranek, Karol & Śmiech, Sławomir, 2022. "Are European natural gas markets connected? A time-varying spillovers analysis," Resources Policy, Elsevier, vol. 79(C).
    10. Andrada-Félix, Julián & Fernandez-Perez, Adrian & Sosvilla-Rivero, Simón, 2020. "Distant or close cousins: Connectedness between cryptocurrencies and traditional currencies volatilities," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
    11. Jonathan E. Ogbuabor & Anthony Orji & Gladys C. Aneke & Oyun Erdene-Urnukh, 2016. "Measuring the Real and Financial Connectedness of Selected African Economies with the Global Economy," South African Journal of Economics, Economic Society of South Africa, vol. 84(3), pages 364-399, September.
    12. Chen, Huayi & Shi, Huai-Long & Zhou, Wei-Xing, 2024. "Carbon volatility connectedness and the role of external uncertainties: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 33(C).
    13. Uluceviz, Erhan & Yilmaz, Kamil, 2021. "Measuring real–financial connectedness in the U.S. economy," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    14. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
    15. Miao, Ke & Phillips, Peter C.B. & Su, Liangjun, 2023. "High-dimensional VARs with common factors," Journal of Econometrics, Elsevier, vol. 233(1), pages 155-183.
    16. Lin, Sihan & Chen, Shoudong, 2021. "Dynamic connectedness of major financial markets in China and America," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 646-656.
    17. Singh, Vipul Kumar & Nishant, Shreyank & Kumar, Pawan, 2018. "Dynamic and directional network connectedness of crude oil and currencies: Evidence from implied volatility," Energy Economics, Elsevier, vol. 76(C), pages 48-63.
    18. Arı, Yakup, 2022. "USD/TRY and foreign banks in Turkey: Evidence by TVP-VAR," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 67, pages 5-26.
    19. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    20. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.

    More about this item

    Keywords

    Connectedness; Vector autoregression; Time-varying parameter model; Rolling window estimation; Systemic risk; Financial institutions.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:koc:wpaper:1802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sumru Oz (email available below). General contact details of provider: https://edirc.repec.org/data/dekoctr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.