IDEAS home Printed from https://ideas.repec.org/p/kob/dpaper/dp2016-36.html
   My bibliography  Save this paper

A Multiple-Try Extension of the Particle Marginal Metropolis-Hastings (PMMH) Algorithm with an Independent Proposal

Author

Listed:
  • Takashi Kamihigashi

    (Research Institute for Economics & Business Administration (RIEB), Kobe University, Japan)

  • Hiroyuki Watanabe

    (Research Institute for Economics & Business Administration (RIEB), Kobe University, Japan)

Abstract

In this paper we propose a multiple-try extension of the PMMH algorithm with an independent proposal. In our algorithm, I ∈ ℕ parameter particles are sampled from the independent proposal. For each of them, a particle fiter with K ∈ ℕ state particles is run. We show that the algorithm has the following properties: (i) the distribution of the Markov chain generated by the algorithm converges to the posterior of interest in total variation; (ii) as I increases to ∞, the acceptance probability at each iteration converges to 1; and (iii) as I increases to 1, the autocorrelation of any order for any parameter with bounded support converges to 0. These results indicate that the algorithm generates almost i.i.d. samples from the posterior for sufficiently large I. Our numerical experiments suggest that one can visibly improve mixing by increasing I from 1 to only 10. This does not significantly increase computation time if a computer with at least 10 threads is used.

Suggested Citation

  • Takashi Kamihigashi & Hiroyuki Watanabe, 2016. "A Multiple-Try Extension of the Particle Marginal Metropolis-Hastings (PMMH) Algorithm with an Independent Proposal," Discussion Paper Series DP2016-36, Research Institute for Economics & Business Administration, Kobe University.
  • Handle: RePEc:kob:dpaper:dp2016-36
    as

    Download full text from publisher

    File URL: https://www.rieb.kobe-u.ac.jp/academic/ra/dp/English/DP2016-36.pdf
    File Function: First version, 2016
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    2. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
    3. Geir Storvik, 2011. "On the Flexibility of Metropolis–Hastings Acceptance Probabilities in Auxiliary Variable Proposal Generation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(2), pages 342-358, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    2. Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019. "Speeding Up MCMC by Efficient Data Subsampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
    3. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Bayesian analysis of chaos: The joint return-volatility dynamical system," MPRA Paper 80632, University Library of Munich, Germany.
    4. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    5. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.
    6. Golightly Andrew & Wilkinson Darren J., 2015. "Bayesian inference for Markov jump processes with informative observations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 169-188, April.
    7. Chris Sherlock, 2016. "Optimal Scaling for the Pseudo-Marginal Random Walk Metropolis: Insensitivity to the Noise Generating Mechanism," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 869-884, September.
    8. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    9. Hall, Jamie & Pitt, Michael K. & Kohn, Robert, 2014. "Bayesian inference for nonlinear structural time series models," Journal of Econometrics, Elsevier, vol. 179(2), pages 99-111.
    10. Neil Shephard, 2013. "Martingale unobserved component models," Economics Papers 2013-W01, Economics Group, Nuffield College, University of Oxford.
    11. Douc, Randal & Olsson, Jimmy & Roueff, François, 2020. "Posterior consistency for partially observed Markov models," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 733-759.
    12. Jonathan U Harrison & Ruth E Baker, 2018. "The impact of temporal sampling resolution on parameter inference for biological transport models," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-30, June.
    13. István Barra & Lennart Hoogerheide & Siem Jan Koopman & André Lucas, 2017. "Joint Bayesian Analysis of Parameters and States in Nonlinear non‐Gaussian State Space Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 1003-1026, August.
    14. Cheng, Jing & Chan, Ngai Hang, 2019. "Efficient inference for nonlinear state space models: An automatic sample size selection rule," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 143-154.
    15. Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.
    16. Fredrik Lindsten & Randal Douc & Eric Moulines, 2015. "Uniform Ergodicity of the Particle Gibbs Sampler," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 775-797, September.
    17. Thomas Lux, 2022. "Bayesian Estimation of Agent-Based Models via Adaptive Particle Markov Chain Monte Carlo," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 451-477, August.
    18. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    19. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    20. Hall, Jamie, 2012. "Consumption dynamics in general equilibrium," MPRA Paper 43933, University Library of Munich, Germany.

    More about this item

    Keywords

    Multiple-try method; Particle marginal Metropolis-Hastings; Markov chain Monte Carlo; Mixing; State space models;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kob:dpaper:dp2016-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Office of Promoting Research Collaboration, Research Institute for Economics & Business Administration, Kobe University (email available below). General contact details of provider: https://edirc.repec.org/data/rikobjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.