IDEAS home Printed from https://ideas.repec.org/p/ise/remwps/wp02092021.html
   My bibliography  Save this paper

Building a hurricane risk map for continental Portugal based on loss data from hurricane Leslie

Author

Listed:
  • Andrea Hauser
  • Carlos Rosa
  • Rui Esteves
  • Alexandra Moura
  • Carlos Oliveira

Abstract

A complete model to analyse and predict future losses in the property portfolio of an insurance company due to hurricanes is proposed. A novel statistical model, in which weather data is not required, is considered. Climate data may not be reliable, or may be difficult to deal with or to obtain, hence we reconstruct the storm behaviour through the registered claims and respective losses. The model is calibrated using the loss data of the property portfolio of the insurance company Fidelidade, from hurricane Leslie, which hit the center of continental Portugal in October 2018. Several scenarios are simulated and risk maps are built. The simulated scenarios can be used to compute risk premiums per risk class in the portfolio. These can be used to adjust the policy premiums accounting for a storm risk. The risk map of the company also depends on its portfolio, namely its exposure, providing a hurricane risk management tool for the insurance company.

Suggested Citation

  • Andrea Hauser & Carlos Rosa & Rui Esteves & Alexandra Moura & Carlos Oliveira, 2021. "Building a hurricane risk map for continental Portugal based on loss data from hurricane Leslie," Working Papers REM 2021/0209, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  • Handle: RePEc:ise:remwps:wp02092021
    as

    Download full text from publisher

    File URL: https://rem.rc.iseg.ulisboa.pt/wps/pdf/REM_WP_0209_2021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian L. E. Franzke, 2017. "Impacts of a Changing Climate on Economic Damages and Insurance," Economics of Disasters and Climate Change, Springer, vol. 1(1), pages 95-110, June.
    2. Arthur Charpentier, 2008. "Insurability of Climate Risks," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 33(1), pages 91-109, January.
    3. Jeremy S. Pal & Elfatih A. B. Eltahir, 2016. "Future temperature in southwest Asia projected to exceed a threshold for human adaptability," Nature Climate Change, Nature, vol. 6(2), pages 197-200, February.
    4. Botzen,W. J. Wouter, 2016. "Managing Extreme Climate Change Risks through Insurance," Cambridge Books, Cambridge University Press, number 9781316600887, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susannah Fisher & Swenja Surminski, 2012. "The roles of public and private actors in the governance of adaptation: the case of agricultural insurance in India," GRI Working Papers 89, Grantham Research Institute on Climate Change and the Environment.
    2. Arthur Charpentier & Molly James & Hani Ali, 2021. "Predicting Drought and Subsidence Risks in France," Papers 2107.07668, arXiv.org.
    3. Surminski, Swenja & Eldridge, Jillian, 2015. "Flood insurance in England: an assessment of the current and newly proposed insurance scheme in the context of rising flood risk," LSE Research Online Documents on Economics 66256, London School of Economics and Political Science, LSE Library.
    4. Christian L. E. Franzke & Herminia Torelló i Sentelles, 2020. "Risk of extreme high fatalities due to weather and climate hazards and its connection to large-scale climate variability," Climatic Change, Springer, vol. 162(2), pages 507-525, September.
    5. Whalley, John & Yuan, Yufei, 2009. "Global financial structure and climate change," Journal of Financial Transformation, Capco Institute, vol. 25, pages 161-168.
    6. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Roger Fouquet (ed.), 2013. "Handbook on Energy and Climate Change," Books, Edward Elgar Publishing, number 14429.
    8. Hao Guo & Xingming Zhang & Fang Lian & Yuan Gao & Degen Lin & Jing’ai Wang, 2016. "Drought Risk Assessment Based on Vulnerability Surfaces: A Case Study of Maize," Sustainability, MDPI, vol. 8(8), pages 1-22, August.
    9. Christian L. E. Franzke & Marcin Czupryna, 2020. "Probabilistic assessment and projections of US weather and climate risks and economic damages," Climatic Change, Springer, vol. 158(3), pages 503-515, February.
    10. Surminski, Swenja, 2014. "The role of insurance in reducing direct risk: the case of flood insurance," LSE Research Online Documents on Economics 60764, London School of Economics and Political Science, LSE Library.
    11. Botzen, W.J.W. & van den Bergh, J.C.J.M., 2012. "Risk attitudes to low-probability climate change risks: WTP for flood insurance," Journal of Economic Behavior & Organization, Elsevier, vol. 82(1), pages 151-166.
    12. Swenja Surminski & Jillian Eldridge, 2014. "Flood insurance in England � an assessment of the current and newly proposed insurance scheme in the context of rising flood risk," GRI Working Papers 144, Grantham Research Institute on Climate Change and the Environment.
    13. Fisher, Susannah & Surminski, Swenja, 2012. "The roles of public and private actors in the governance of adaptation: the case of agricultural insurance in India," LSE Research Online Documents on Economics 46400, London School of Economics and Political Science, LSE Library.
    14. Muhammad Imran Khan & Dana I. Al Huneidi & Faisal Asfand & Sami G. Al-Ghamdi, 2023. "Climate Change Implications for Optimal Sizing of Residential Rooftop Solar Photovoltaic Systems in Qatar," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    15. Surminski, Swenja & Oramas-Dorta, Delioma, 2013. "Flood insurance schemes and climate adaptation in developing countries," LSE Research Online Documents on Economics 66294, London School of Economics and Political Science, LSE Library.
    16. Donatella Porrini & Reimund Schwarze, 2014. "Insurance models and European climate change policies: an assessment," European Journal of Law and Economics, Springer, vol. 38(1), pages 7-28, August.
    17. Samuel Lüthi & Christopher Fairless & Erich M. Fischer & Noah Scovronick & Armstrong & Micheline De Sousa Zanotti Stagliorio Coelho & Yue Leon Guo & Yuming Guo & Yasushi Honda & Veronika Huber & Jan K, 2023. "Rapid increase in the risk of heat-related mortality," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Jennifer Vanos & Gisel Guzman-Echavarria & Jane W. Baldwin & Coen Bongers & Kristie L. Ebi & Ollie Jay, 2023. "A physiological approach for assessing human survivability and liveability to heat in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Rio Yonson, 2018. "Floods and Pestilence: Diseases in Philippine Urban Areas," Economics of Disasters and Climate Change, Springer, vol. 2(2), pages 107-135, July.
    20. Mohsen Abbasnia, 2019. "Climatic characteristics of heat waves under climate change: a case study of mid-latitudes, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 637-656, April.

    More about this item

    Keywords

    Risk; Hurricanes; Property Insurance; Regression Models;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ise:remwps:wp02092021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sandra Araújo (email available below). General contact details of provider: https://rem.rc.iseg.ulisboa.pt/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.