IDEAS home Printed from https://ideas.repec.org/p/ipe/ipetds/1047.html
   My bibliography  Save this paper

Tábuas de Mortalidade no Mercado Brasileiro de Seguros - Uma Comparação

Author

Listed:
  • Kaizô Iwakami Beltrão
  • Sonoe Sugahara
  • Danilo Cláudio Da Silva
  • Elder Vieira Salles

Abstract

A tábua de mortalidade para uma dada população é uma ferramenta importante nãoapenas em termos dos estudos atuariais e demográficos em geral, como também parapolíticas públicas e financiamento do setor privado para certos serviços ofertados nomercado. Devido a sua importância crucial na análise de problemas de diversasnaturezas, uma estimativa precisa é freqüentemente necessária.Tábuas de vida tornaram-se uma necessidade primordial para cálculos de segurosquando o assunto é pertinente a pessoas. Atualmente, o problema mais comumquando se lida com seguros, além da taxa de retorno, refere-se à escolha de uma tábuade vida adequada a uma dada população. O mercado de seguros brasileiro carece detábuas de vida para sua população e tem usado tábuas estrangeiras, desenvolvidas paraoutros países de diferentes culturas e experiências de mortalidade.Um trabalho anterior de Beltrão e Sugahara (2002a) constrói tábuas de vida paraconsumidores de plano de pensões privadas com base nos dados administrativos daSuperintendência de Seguros Privados (Susep) de 1998. Os mesmos autores tambémfizeram uso de informações fornecidas pela Siape para calcular a tábua de vida defuncionários ativos e aposentados do governo federal, desagregando informações porsexo e escolaridade [Beltrão e Sugahara (2002b)]. A vantagem em utilizar dadosadministrativos é que os numeradores e denominadores vêm da mesma fonte e osdados são coletados diretamente de documentos oficiais, evitando assim problemas decobertura e erro de dígito preferencial.Este texto sintetiza uma série de documentos que incluem tábuas de vida paraconsumidores de pensão privada e seguro de vida individual [dados para o período1998-2000, Beltrão e Sugahara (2004a e 2004b)] e seguros de vida em grupo e deacidente pessoal [dados para o período 1999-2000, Beltrão e Sugahara (2004c e2004d)]. Para cada uma dessas populações, a equação matemática sugerida porHeligman e Pollard (1980) foi interativamente ajustada aos dados. Essa equação temtrês componentes: mortalidade infantil, mortalidade por causas externas e mortalidadepor senescência. A primeira componente não pode ser ajustada com as informaçõesdisponíveis e só a mortalidade adulta/idosa foi estimada. Algumas comparaçõesdas tábuas assim obtidas foram feitas com outras tábuas em uso pelo mercadode seguros e a estimada pelo IBGE em 2000 para a população como um todo.Intervalos de confiança são fornecidos, como também a logverossimilhança dasdiferentes tábuas utilizadas com relação aos dados observados.Até mesmo para uma população razoavelmente homogênea, como a deconsumidores de produtos do mercado de seguros, existem diferenciais entre as váriassubpopulações. Para um dado produto desagregado por tipo de cobertura, os dadossão consistentes com a hipótese de que consumidores de produtos de previdênciaapresentam mortalidade mais baixa do que os consumidores de produtos vida. Osdiferenciais de gênero são também bem marcantes nos dados. The mortality table for a given population is an important tool not only in terms ofgeneral actuarial and demographic studies, but also for public policy planning andprivate costing of certain services. It is widely used for a number of situations rangingfrom forecasts and demand studies for health services, estimations of the school agepopulation and labor market, to cost estimates for social security and insurancepremiums. Due to its crucial importance in problem analysis of diverse natures, aprecise estimation is often required.This text compares period mortality rates obtained across different products andcoverage available in the Brazilian insurance market. Data for private pension (PP)and for individual life insurance (LI) products refer to a three-year period: 1998 to2000, whereas group insurance (GI) and personal accidents (PA), refer to the years1999 and 2000. With more data (for the coming years), we hope to estimate cohortmortality tables and extrapolate future trends in mortality. A mathematical equationwas interactively fitted to the data. This equation has three components: infantmortality, mortality by external causes and mortality by senescence. The firstcomponent cannot be adjusted from the available information and only adult/elderlymortality was modeled. The full model is:

Suggested Citation

  • Kaizô Iwakami Beltrão & Sonoe Sugahara & Danilo Cláudio Da Silva & Elder Vieira Salles, 2004. "Tábuas de Mortalidade no Mercado Brasileiro de Seguros - Uma Comparação," Discussion Papers 1047, Instituto de Pesquisa Econômica Aplicada - IPEA.
  • Handle: RePEc:ipe:ipetds:1047
    as

    Download full text from publisher

    File URL: http://www.ipea.gov.br/portal/images/stories/PDFs/TDs/td_1047.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David McCarthy & Olivia S. Mitchell, 2003. "International Adverse Selection in Life Insurance and Annuities," NBER Working Papers 9975, National Bureau of Economic Research, Inc.
    2. Ortega, Antonio, 1987. "Tablas de mortalidad," Series Históricas 8977, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    3. Dora L. Costa & Joanna Lahey, 2003. "Becoming Oldest-Old: Evidence from Historical U.S. Data," NBER Working Papers 9933, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitchell, Olivia S. & Piggott, John, 2004. "Unlocking housing equity in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 18(4), pages 466-505, December.
    2. Henrik Brønnum-Hansen & Juan Carlos Albizu-Campos Espiñeira & Camila Perera & Ingelise Andersen, 2023. "Trends in mortality patterns in two countries with different welfare models: comparisons between Cuba and Denmark 1955–2020," Journal of Population Research, Springer, vol. 40(2), pages 1-28, June.
    3. Coelho, Marta & de Meza, David, 2012. "Do bad risks know it? Experimental evidence on optimism and adverse selection," Economics Letters, Elsevier, vol. 114(2), pages 168-171.
    4. Raj Chetty & Amy Finkelstein, 2012. "Social Insurance: Connecting Theory to Data," NBER Working Papers 18433, National Bureau of Economic Research, Inc.
    5. Dardanoni, V & Li Donni, P, 2008. "Testing For Asymmetric Information In Insurance Markets With Unobservable Types," Health, Econometrics and Data Group (HEDG) Working Papers 08/26, HEDG, c/o Department of Economics, University of York.
    6. Estelle James & Guillermo Martinez & Augusto Iglesias, 2005. "The Payout Stage in Chile: Who Annuitizes and Why?," Working Papers 14, Superintendencia de Pensiones, revised May 2007.
    7. David M. Cutler & Amy Finkelstein & Kathleen McGarry, 2008. "Preference Heterogeneity and Insurance Markets: Explaining a Puzzle of Insurance," American Economic Review, American Economic Association, vol. 98(2), pages 157-162, May.
    8. Hans-Martin von Gaudecker & Carsten Weber, 2004. "Surprises in a Growing Market Niche: An Evaluation of the German Private Life Annuities Market," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 29(3), pages 394-416, July.
    9. Dora Costa & Matthew Kahn, 2010. "Health, wartime stress, and unit cohesion: Evidence from Union Army veterans," Demography, Springer;Population Association of America (PAA), vol. 47(1), pages 45-66, February.
    10. Li Donni, P., 2010. "Risk Preference Heterogeneity And Multiple Demand For Insurance," Health, Econometrics and Data Group (HEDG) Working Papers 10/17, HEDG, c/o Department of Economics, University of York.
    11. Dora L. Costa, 2015. "Health and the Economy in the United States from 1750 to the Present," Journal of Economic Literature, American Economic Association, vol. 53(3), pages 503-570, September.
    12. Roozbeh Hosseini, 2015. "Adverse Selection in the Annuity Market and the Role for Social Security," Journal of Political Economy, University of Chicago Press, vol. 123(4), pages 941-984.
    13. Michiel Bijlsma & Cora Zonderland & Machiel van Dijk & Marc Pomp, 2005. "Competition in markets for life insurance," CPB Document 96, CPB Netherlands Bureau for Economic Policy Analysis.
    14. Alma Cohen & Peter Siegelman, 2010. "Testing for Adverse Selection in Insurance Markets," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(1), pages 39-84, March.
    15. Dora L. Costa, 2004. "Race and Older Age Mortality: Evidence from Union Army Veterans," NBER Working Papers 10902, National Bureau of Economic Research, Inc.
    16. Amy Finkelstein & James Poterba, 2014. "Testing for Asymmetric Information Using “Unused Observables” in Insurance Markets: Evidence from the U.K. Annuity Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(4), pages 709-734, December.
    17. Pau Olivella & Fred Schroyen, 2014. "Multidimensional Screening in a Monopolistic Insurance Market," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 39(1), pages 90-130, March.
    18. David McCarthy & Olivia S. Mitchell, 2004. "Annuities for an ageing world," Chapters, in: Elsa Fornero & Elisa Luciano (ed.), Developing an Annuity Market in Europe, chapter 2, pages 13-48, Edward Elgar Publishing.
    19. Michiel Bijlsma & Machiel van Dijk & Marc Pomp & Cora Zonderland, 2005. "Competition in markets for life insurance," CPB Document 96.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    20. Dora Costa, 2012. "Scarring and Mortality Selection Among Civil War POWs: A Long-Term Mortality, Morbidity, and Socioeconomic Follow-Up," Demography, Springer;Population Association of America (PAA), vol. 49(4), pages 1185-1206, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipe:ipetds:1047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabio Schiavinatto (email available below). General contact details of provider: https://edirc.repec.org/data/ipeaabr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.