IDEAS home Printed from https://ideas.repec.org/p/ime/imedps/20-e-11.html
   My bibliography  Save this paper

Disagreement between Human and Machine Predictions

Author

Listed:
  • Daisuke Miyakawa

    (Associate Professor, Hitotsubashi University Business School (E-mail: dmiyakawa@hub.hit-u.ac.jp))

  • Kohei Shintani

    (Director and Senior Economist, Institute for Monetary and Economic Studies, Bank of Japan (E-mail: kouhei.shintani@boj.or.jp))

Abstract

We document how professional analysts' predictions of firm exits disagree with machine-based predictions. First, on average, human predictions underperform machine predictions. Second, however, the relative performance of human to machine predictions improves for firms with specific characteristics, such as less observable information, possibly due to the unstructured information used only in human predictions. Third, for firms with less information, reallocating prediction tasks from machine to analysts reduces type I error while simultaneously increasing type II error. Under certain conditions, human predictions can outperform machine predictions.

Suggested Citation

  • Daisuke Miyakawa & Kohei Shintani, 2020. "Disagreement between Human and Machine Predictions," IMES Discussion Paper Series 20-E-11, Institute for Monetary and Economic Studies, Bank of Japan.
  • Handle: RePEc:ime:imedps:20-e-11
    as

    Download full text from publisher

    File URL: https://www.imes.boj.or.jp/research/papers/english/20-E-11.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1.
    2. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    3. Samuel Bazzi & Robert A. Blair & Christopher Blattman & Oeindrila Dube & Matthew Gudgeon & Richard Peck, 2022. "The Promise and Pitfalls of Conflict Prediction: Evidence from Colombia and Indonesia," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 764-779, October.
    4. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    5. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    6. Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338, August.
    7. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    8. José María Liberti & Mitchell A Petersen, 2019. "Information: Hard and Soft," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 8(1), pages 1-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Honda, Tomohito & Hosono, Kaoru & Miyakawa, Daisuke & Ono, Arito & Uesugi, Iichiro, 2023. "Determinants and effects of the use of COVID-19 business support programs in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 67(C).
    2. Hoshi, Takeo & Kawaguchi, Daiji & Ueda, Kenichi, 2023. "Zombies, again? The COVID-19 business support programs in Japan," Journal of Banking & Finance, Elsevier, vol. 147(C).
    3. Takeo Hoshi & Daiji Kawaguchi & Kenichi Ueda, 2021. "The Return of the Dead? The COVID-19 Business Support Programs in Japan (Forthcoming in Journal of Banking and Finance)," CARF F-Series CARF-F-513, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gries, Thomas & Naudé, Wim, 2022. "Modelling artificial intelligence in economics," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 56, pages 1-12.
    2. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2019. "Digitalization and the Future of Work: Macroeconomic Consequences," IZA Discussion Papers 12428, Institute of Labor Economics (IZA).
    3. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    4. Fossen, Frank M. & Sorgner, Alina, 2019. "New Digital Technologies and Heterogeneous Employment and Wage Dynamics in the United States: Evidence from Individual-Level Data," IZA Discussion Papers 12242, Institute of Labor Economics (IZA).
    5. Francesco Decarolis & Cristina Giorgiantonio, 2020. "Corruption red flags in public procurement: new evidence from Italian calls for tenders," Questioni di Economia e Finanza (Occasional Papers) 544, Bank of Italy, Economic Research and International Relations Area.
    6. Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    7. Benhamou, Salima, 2022. "Les transformations du travail et de l’emploi à l’ère de l’Intelligence artificielle: Évaluation, illustrations et interrogations," Documentos de Proyectos 48529, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    8. Ajay Agrawal & Joshua S. Gans & Avi Goldfarb, 2019. "Artificial Intelligence: The Ambiguous Labor Market Impact of Automating Prediction," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 31-50, Spring.
    9. Tatiana de Macedo Nogueira Lima, 2022. "Documento de Trabalho 03/2022 - Aprendizado de máquina e antitruste," Documentos de Trabalho 2022030, Conselho Administrativo de Defesa Econômica (Cade), Departamento de Estudos Econômicos.
    10. Sergio De Nardis & Francesca Parente, 2022. "Technology and task changes in the major EU countries," Contemporary Economic Policy, Western Economic Association International, vol. 40(2), pages 391-413, April.
    11. Stefan Schweikl & Robert Obermaier, 2020. "Lessons from three decades of IT productivity research: towards a better understanding of IT-induced productivity effects," Management Review Quarterly, Springer, vol. 70(4), pages 461-507, November.
    12. Steve J. Bickley & Ho Fai Chan & Benno Torgler, 2022. "Artificial intelligence in the field of economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2055-2084, April.
    13. Parteka, Aleksandra & Wolszczak-Derlacz, Joanna & Nikulin, Dagmara, 2024. "How digital technology affects working conditions in globally fragmented production chains: Evidence from Europe," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    14. Andres, Antonio Rodriguez & Otero, Abraham & Amavilah, Voxi Heinrich, 2021. "Using Deep Learning Neural Networks to Predict the Knowledge Economy Index for Developing and Emerging Economies," MPRA Paper 109137, University Library of Munich, Germany.
    15. Jacopo Staccioli & Maria Enrica Virgillito, 2020. "The present, past, and future of labor-saving technologies," DISCE - Quaderni del Dipartimento di Politica Economica dipe0013, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    16. MORIKAWA Masayuki, 2020. "Heterogeneous Relationships between Automation Technologies and Skilled Labor: Evidence from a Firm Survey," Discussion papers 20004, Research Institute of Economy, Trade and Industry (RIETI).
    17. Akash Malhotra, 2021. "A hybrid econometric–machine learning approach for relative importance analysis: prioritizing food policy," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 549-581, September.
    18. Anderton, Robert & Jarvis, Valerie & Labhard, Vincent & Morgan, Julian & Petroulakis, Filippos & Vivian, Lara, 2020. "Virtually everywhere? Digitalisation and the euro area and EU economies," Occasional Paper Series 244, European Central Bank.
    19. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    20. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.

    More about this item

    Keywords

    Machine Learning; Human Prediction; Disagreement;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ime:imedps:20-e-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kinken (email available below). General contact details of provider: https://edirc.repec.org/data/imegvjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.