IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/34-14.html
   My bibliography  Save this paper

A Test for Instrument Validity

Author

Listed:
  • Toru Kitagawa

    (Institute for Fiscal Studies and University College London)

Abstract

This paper develops a specification test for instrument validity in the heterogeneous treatment effect model with a binary treatment and a discrete instrument. The strongest testable implication for instrument validity is given by the condition for non-negativity of point- identifiable complier’s outcome densities. Our specification test infers this testable implication using a variance-weighted Kolmogorov-Smirnov test statistic. Implementation of the proposed test does not require smoothing parameters, even though the testable implications involve non-parametric densities. The test can be applied to both discrete and continuous outcome cases, and an extension of the test to settings with conditioning covariates is provided.

Suggested Citation

  • Toru Kitagawa, 2014. "A Test for Instrument Validity," CeMMAP working papers CWP34/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:34/14
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/cwp341414.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    2. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    3. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    4. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    5. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seojeong Lee, 2018. "A Consistent Variance Estimator for 2SLS When Instruments Identify Different LATEs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 400-410, July.
    2. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    3. Ismael Mourifie & Yuanyuan Wan, 2015. "(Partially) Identifying potential outcome distributions in triangular systems," Working Papers tecipa-532, University of Toronto, Department of Economics.
    4. Laffers, Lukas & Mellace, Giovanni, 2015. "A Note on Testing the LATE Assumptions," Discussion Papers on Economics 4/2015, University of Southern Denmark, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanchun Jin, 2016. "Nonparametric tests for the effect of treatment on conditional variance," KIER Working Papers 948, Kyoto University, Institute of Economic Research.
    2. Toru Kitagawa, 2013. "A bootstrap test for instrument validity in heterogeneous treatment effect models," CeMMAP working papers CWP53/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    4. Toru Kitagawa, 2014. "A Test for Instrument Validity," CeMMAP working papers 34/14, Institute for Fiscal Studies.
    5. Sun, Zhenting, 2023. "Instrument validity for heterogeneous causal effects," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Yu‐Chin Hsu & Shu Shen, 2021. "Testing monotonicity of conditional treatment effects under regression discontinuity designs," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 346-366, April.
    7. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    8. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    9. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    10. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    11. Joshua D. Angrist, 2004. "Treatment effect heterogeneity in theory and practice," Economic Journal, Royal Economic Society, vol. 114(494), pages 52-83, March.
    12. Kojevnikov, Denis & Song, Kyungchul, 2023. "Econometric inference on a large Bayesian game with heterogeneous beliefs," Journal of Econometrics, Elsevier, vol. 237(1).
    13. Qihui Chen & Zheng Fang, 2019. "Inference on Functionals under First Order Degeneracy," Papers 1901.04861, arXiv.org.
    14. Christian Bontemps & Raquel Menezes Bezerra Sampaio, 2020. "Entry games for the airline industry," Post-Print hal-02137358, HAL.
    15. Joshua D. Angrist & Sarah R. Cohodes & Susan M. Dynarski & Parag A. Pathak & Christopher R. Walters, 2016. "Stand and Deliver: Effects of Boston's Charter High Schools on College Preparation, Entry, and Choice," Journal of Labor Economics, University of Chicago Press, vol. 34(2), pages 275-318.
    16. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    18. Heidi Allen & Katherine Baicker, 2021. "The Effect of Medicaid on Care and Outcomes for Chronic Conditions: Evidence from the Oregon Health Insurance Experiment," NBER Working Papers 29373, National Bureau of Economic Research, Inc.
    19. Hsu, De Fen & Morrill, Melinda & Pathak, Aditi, 2024. "Health and retirement: Heterogeneity in the responsiveness to pension incentives," Economics Letters, Elsevier, vol. 238(C).
    20. Francis J. DiTraglia & Camilo García-Jimeno, 2017. "Mis-classified, Binary, Endogenous Regressors: Identification and Inference," NBER Working Papers 23814, National Bureau of Economic Research, Inc.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:34/14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.