IDEAS home Printed from https://ideas.repec.org/p/huj/dispap/dp333.html
   My bibliography  Save this paper

Compound Voting and the Banzhaf Power Index

Author

Listed:
  • Pradeep Dubey
  • Ezra Einy
  • Ori Haimanko

Abstract

We present three axioms for a power index defined on the domain of simple (voting) games. Positivity requires that no voter has negative power, and at least one has positive power. Transfer requires that, when winning coalitions are enhanced in a game, the change in voting power depends only on the change in the game, i.e., on the set of new winning coalitions. The most crucial axiom is composition: the value of a player in a compound voting game is the product of his power in the relevant first-tier game and the power of his delegate in the second-tier game. We prove that these three axioms categorically determine the Banzhaf index.

Suggested Citation

  • Pradeep Dubey & Ezra Einy & Ori Haimanko, 2003. "Compound Voting and the Banzhaf Power Index," Discussion Paper Series dp333, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
  • Handle: RePEc:huj:dispap:dp333
    as

    Download full text from publisher

    File URL: http://ratio.huji.ac.il/sites/default/files/publications/Haimanko333.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Josune Albizuri & Luis M. Ruiz, 2001. "A new axiomatization of the Banzhaf semivalue," Spanish Economic Review, Springer;Spanish Economic Association, vol. 3(2), pages 97-109.
    2. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    3. Pradeep Dubey & Abraham Neyman & Robert J. Weber, 1979. "Value Theory without Efficiency," Cowles Foundation Discussion Papers 513, Cowles Foundation for Research in Economics, Yale University.
    4. Dan S. Felsenthal & Moshé Machover, 1998. "The Measurement of Voting Power," Books, Edward Elgar Publishing, number 1489.
    5. Federico Valenciano & Annick Laruelle, 2000. "- Shapley-Shubik And Banzhaf Indices Revisited," Working Papers. Serie AD 2000-02, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    6. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    7. Ezra Einy, 1987. "Semivalues of Simple Games," Mathematics of Operations Research, INFORMS, vol. 12(2), pages 185-192, May.
    8. Pradeep Dubey & Abraham Neyman & Robert James Weber, 1981. "Value Theory Without Efficiency," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 122-128, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crama, Yves & Leruth, Luc, 2007. "Control and voting power in corporate networks: Concepts and computational aspects," European Journal of Operational Research, Elsevier, vol. 178(3), pages 879-893, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubey, Pradeep & Einy, Ezra & Haimanko, Ori, 2005. "Compound voting and the Banzhaf index," Games and Economic Behavior, Elsevier, vol. 51(1), pages 20-30, April.
    2. Ori Haimanko, 2019. "Composition independence in compound games: a characterization of the Banzhaf power index and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 755-768, September.
    3. Annick Laruelle & Federico Valenciano, 2005. "A critical reappraisal of some voting power paradoxes," Public Choice, Springer, vol. 125(1), pages 17-41, July.
    4. Ori Haimanko, 2020. "Generalized Coleman-Shapley indices and total-power monotonicity," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(1), pages 299-320, March.
    5. Carreras, Francesc & Freixas, Josep & Puente, Maria Albina, 2003. "Semivalues as power indices," European Journal of Operational Research, Elsevier, vol. 149(3), pages 676-687, September.
    6. Berghammer, Rudolf & Bolus, Stefan & Rusinowska, Agnieszka & de Swart, Harrie, 2011. "A relation-algebraic approach to simple games," European Journal of Operational Research, Elsevier, vol. 210(1), pages 68-80, April.
    7. Haimanko, Ori, 2018. "The axiom of equivalence to individual power and the Banzhaf index," Games and Economic Behavior, Elsevier, vol. 108(C), pages 391-400.
    8. Ori Haimanko, 2019. "The Banzhaf Value and General Semivalues for Differentiable Mixed Games," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 767-782, August.
    9. Carreras, Francesc & Giménez, José Miguel, 2010. "Semivalues: power,potential and multilinear extensions," MPRA Paper 27620, University Library of Munich, Germany.
    10. André Casajus & Frank Huettner, 2019. "The Coleman–Shapley index: being decisive within the coalition of the interested," Public Choice, Springer, vol. 181(3), pages 275-289, December.
    11. Barua, Rana & Chakravarty, Satya R. & Sarkar, Palash, 2009. "Minimal-axiom characterizations of the Coleman and Banzhaf indices of voting power," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 367-375, November.
    12. Francesc Carreras & María Albina Puente, 2012. "Symmetric Coalitional Binomial Semivalues," Group Decision and Negotiation, Springer, vol. 21(5), pages 637-662, September.
    13. Saari, Donald G. & Sieberg, Katri K., 2001. "Some Surprising Properties of Power Indices," Games and Economic Behavior, Elsevier, vol. 36(2), pages 241-263, August.
    14. Fujimoto, Katsushige & Kojadinovic, Ivan & Marichal, Jean-Luc, 2006. "Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices," Games and Economic Behavior, Elsevier, vol. 55(1), pages 72-99, April.
    15. Leech, Dennis, 2002. "Power Indices As An Aid To Institutional Design : The Generalised Apportionment Problem," The Warwick Economics Research Paper Series (TWERPS) 648, University of Warwick, Department of Economics.
    16. Carreras, Francesc, 2005. "A decisiveness index for simple games," European Journal of Operational Research, Elsevier, vol. 163(2), pages 370-387, June.
    17. O'Neill, Barry & Peleg, Bezalel, 2008. "Lexicographic composition of simple games," Games and Economic Behavior, Elsevier, vol. 62(2), pages 628-642, March.
    18. René Brink & Agnieszka Rusinowska & Frank Steffen, 2013. "Measuring power and satisfaction in societies with opinion leaders: an axiomatization," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 671-683, September.
    19. Barua, Rana & Chakravarty, Satya R. & Roy, Sonali & Sarkar, Palash, 2004. "A characterization and some properties of the Banzhaf-Coleman-Dubey-Shapley sensitivity index," Games and Economic Behavior, Elsevier, vol. 49(1), pages 31-48, October.
    20. Federico Valenciano & Annick Laruelle, 2003. "Potential, Value And Probability," Working Papers. Serie AD 2003-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).

    More about this item

    Keywords

    voting games; Banzhaf power index; compound games; composition axiom;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:huj:dispap:dp333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Simkin (email available below). General contact details of provider: https://edirc.repec.org/data/crihuil.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.