IDEAS home Printed from https://ideas.repec.org/p/hhs/sdueko/2012_002.html
   My bibliography  Save this paper

Maintaining the Regular Ultra Passum Law in data envelopment analysis

Author

Listed:
  • Olesen, Ole B.

    (Department of Business and Economics)

  • Ruggiero, John

    (School of Business Administration)

Abstract

The variable returns to scale data envelopment analysis (DEA) model is developed with a maintained hypothesis of convexity in input-output space. This hypothesis is not consistent with standard microeconomic production theory that posits an S-shape for the production frontier, i.e. for production technologies that obey the Regular Ultra Passum Law. Consequently, measures of technical efficiency assuming convexity are biased downward. In this paper, we provide a more general DEA model that allows the S-shape.

Suggested Citation

  • Olesen, Ole B. & Ruggiero, John, 2012. "Maintaining the Regular Ultra Passum Law in data envelopment analysis," Discussion Papers on Economics 2/2012, University of Southern Denmark, Department of Economics.
  • Handle: RePEc:hhs:sdueko:2012_002
    as

    Download full text from publisher

    File URL: https://www.sdu.dk/-/media/files/om_sdu/institutter/ivoe/disc_papers/disc_2012/dpbe2_2012.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niels Christian Petersen, 1990. "Data Envelopment Analysis on a Relaxed Set of Assumptions," Management Science, INFORMS, vol. 36(3), pages 305-314, March.
    2. Finn Førsund & Lennart Hjalmarsson, 2004. "Are all Scales Optimal in DEA? Theory and Empirical Evidence," Journal of Productivity Analysis, Springer, vol. 21(1), pages 25-48, January.
    3. A. Zellner & N. S. Revankar, 1969. "Generalized Production Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(2), pages 241-250.
    4. Fare, R & Primont, D, 1995. "On Inverse Homotheticity," Bulletin of Economic Research, Wiley Blackwell, vol. 47(2), pages 161-166, April.
    5. Cinzia Daraio & Léopold Simar, 2007. "Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach," Journal of Productivity Analysis, Springer, vol. 28(1), pages 13-32, October.
    6. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    7. Ginsberg, William, 1974. "The multiplant firm with increasing returns to scale," Journal of Economic Theory, Elsevier, vol. 9(3), pages 283-292, November.
    8. Olesen, Ole Bent & Petersen, Niels Christian, 2011. "Scale properties in data envelopment analysis," Discussion Papers on Economics 4/2011, University of Southern Denmark, Department of Economics.
    9. Peter Bogetoft, 1996. "DEA on Relaxed Convexity Assumptions," Management Science, INFORMS, vol. 42(3), pages 457-465, March.
    10. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    11. Ruggiero, John, 1996. "On the measurement of technical efficiency in the public sector," European Journal of Operational Research, Elsevier, vol. 90(3), pages 553-565, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miningou, Élisé Wendlassida & Vierstraete, Valérie, 2013. "Households' living situation and the efficient provision of primary education in Burkina Faso," Economic Modelling, Elsevier, vol. 35(C), pages 910-917.
    2. Olesen, Ole B., 2012. "A homothetic reference technology in Data Envelopment Analysis," Discussion Papers on Economics 14/2012, University of Southern Denmark, Department of Economics.
    3. Olesen, Ole B., 2014. "A homothetic reference technology in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 233(3), pages 759-771.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olesen, Ole B. & Ruggiero, John, 2014. "Maintaining the Regular Ultra Passum Law in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 235(3), pages 798-809.
    2. Ang, Frederic & Kerstens, Pieter Jan, 2017. "Decomposing the Luenberger–Hicks–Moorsteen Total Factor Productivity indicator: An application to U.S. agriculture," European Journal of Operational Research, Elsevier, vol. 260(1), pages 359-375.
    3. Hennebel, Veerle & Simper, Richard & Verschelde, Marijn, 2017. "Is there a prison size dilemma? An empirical analysis of output-specific economies of scale," European Journal of Operational Research, Elsevier, vol. 262(1), pages 306-321.
    4. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    5. Cinzia Daraio & Léopold Simar, 2007. "Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach," Journal of Productivity Analysis, Springer, vol. 28(1), pages 13-32, October.
    6. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    7. Laurens Cherchye & Bram De Rock & Frederic Vermeulen, 2008. "Analyzing Cost-Efficient Production Behavior Under Economies of Scope: A Nonparametric Methodology," Operations Research, INFORMS, vol. 56(1), pages 204-221, February.
    8. Fritz Schiltz & Kristof Witte & Deni Mazrekaj, 2020. "Managerial efficiency and efficiency differentials in adult education: a conditional and bias-corrected efficiency analysis," Annals of Operations Research, Springer, vol. 288(2), pages 529-546, May.
    9. Syrjanen, Mikko J., 2004. "Non-discretionary and discretionary factors and scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 158(1), pages 20-33, October.
    10. Laurens Cherchye & Bram De Rock & Bart Dierynck & Filip Roodhooft & Jeroen Sabbe, 2013. "Opening the “Black Box” of Efficiency Measurement: Input Allocation in Multioutput Settings," Operations Research, INFORMS, vol. 61(5), pages 1148-1165, October.
    11. Mehdiloozad, Mahmood & Podinovski, Victor V., 2018. "Nonparametric production technologies with weakly disposable inputs," European Journal of Operational Research, Elsevier, vol. 266(1), pages 247-258.
    12. Bjørndal, Endre & Bjørndal, Mette & Cullmann, Astrid & Nieswand, Maria, 2018. "Finding the right yardstick: Regulation of electricity networks under heterogeneous environments," European Journal of Operational Research, Elsevier, vol. 265(2), pages 710-722.
    13. Giménez, Víctor & Prior, Diego & Thieme, Claudio & Tortosa-Ausina, Emili, 2024. "International comparisons of COVID-19 pandemic management: What can be learned from activity analysis techniques?," Omega, Elsevier, vol. 122(C).
    14. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    15. José Manuel Cordero & Cristina Polo & Daniel Santín & Gabriela Sicilia, 2016. "Monte-Carlo Comparison of Conditional Nonparametric Methods and Traditional Approaches to Include Exogenous Variables," Pacific Economic Review, Wiley Blackwell, vol. 21(4), pages 483-497, October.
    16. Salomé Kahindo & Stéphane Blancard, 2022. "Reducing pesticide use through optimal reallocation at different spatial scales: The case of French arable farming," Agricultural Economics, International Association of Agricultural Economists, vol. 53(4), pages 648-666, July.
    17. Rogge, Nicky & De Jaeger, Simon, 2013. "Measuring and explaining the cost efficiency of municipal solid waste collection and processing services," Omega, Elsevier, vol. 41(4), pages 653-664.
    18. Maria EL KHDARI & Babacar SARR, 2018. "Decentralization, spending efficiency and pro-poor outcomes in Morocco," Working Papers 201805, CERDI.
    19. J. Vakili & R. Sadighi Dizaji, 2021. "The closest strong efficient targets in the FDH technology: an enumeration method," Journal of Productivity Analysis, Springer, vol. 55(2), pages 91-105, April.
    20. Fabio Pammolli & Francesco Porcelli & Francesco Vidoli & Guido Borà, 2014. "La spesa sanitaria delle Regioni in Italia - Saniregio 3," Working Papers CERM 02-2014, Competitività, Regole, Mercati (CERM).

    More about this item

    Keywords

    Data envelopment analysis; homothetic production; S-shaped production function; non-convex production set;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sdueko:2012_002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Astrid Holm Nielsen (email available below). General contact details of provider: https://edirc.repec.org/data/okioudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.