IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v129y2024ics0305048324001208.html
   My bibliography  Save this article

Efficient targets and reference sets in selectively convex technologies

Author

Listed:
  • Mehdiloo, Mahmood
  • Papaioannou, Grammatoula
  • Podinovski, Victor V.

Abstract

Conventional models of data envelopment analysis (DEA) typically assume that the underlying production technology is a convex set. It is known that such assumption may be clearly unsubstantiated in certain cases. Examples include studies in which some inputs or outputs are stated as proportions or percentages, or are represented by categorical measures. Excluding such “problematic” inputs and outputs from the assumption of convexity while assuming the latter for the remaining measures leads to the notion of selective convexity. Further examples of selectively convex technologies include technologies parameterized by an environmental factor and technologies in which only the input or output sets are convex. In this paper, we consider the identification of efficient targets and reference sets of decision making units in a selectively convex technology, which has not yet been explored in the literature. We show that, for such technologies, the conventional method based on the solution of the additive DEA model may not correctly identify the reference sets and needs an adjustment.

Suggested Citation

  • Mehdiloo, Mahmood & Papaioannou, Grammatoula & Podinovski, Victor V., 2024. "Efficient targets and reference sets in selectively convex technologies," Omega, Elsevier, vol. 129(C).
  • Handle: RePEc:eee:jomega:v:129:y:2024:i:c:s0305048324001208
    DOI: 10.1016/j.omega.2024.103155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048324001208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ole Bent Olesen & Niels Christian Petersen & Victor V. Podinovski, 2022. "Scale characteristics of variable returns-to-scale production technologies with ratio inputs and outputs," Annals of Operations Research, Springer, vol. 318(1), pages 383-423, November.
    2. Silva, Maria Conceição A., 2018. "Output-specific inputs in DEA: An application to courts of justice in Portugal," Omega, Elsevier, vol. 79(C), pages 43-53.
    3. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    4. A S Camanho & R G Dyson, 1999. "Efficiency, size, benchmarks and targets for bank branches: an application of data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(9), pages 903-915, September.
    5. Niels Christian Petersen, 1990. "Data Envelopment Analysis on a Relaxed Set of Assumptions," Management Science, INFORMS, vol. 36(3), pages 305-314, March.
    6. Olesen, Ole Bent & Petersen, Niels Christian & Podinovski, Victor V., 2017. "Efficiency measures and computational approaches for data envelopment analysis models with ratio inputs and outputs," European Journal of Operational Research, Elsevier, vol. 261(2), pages 640-655.
    7. Boussofiane, A. & Dyson, R. G. & Thanassoulis, E., 1991. "Applied data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 52(1), pages 1-15, May.
    8. Mehdiloozad, Mahmood & Mirdehghan, S. Morteza & Sahoo, Biresh K. & Roshdi, Israfil, 2015. "On the identification of the global reference set in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(3), pages 779-788.
    9. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    10. Dominique Deprins & Léopold Simar & Henry Tulkens, 2006. "Measuring Labor-Efficiency in Post Offices," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 285-309, Springer.
    11. López-Torres, Laura & Prior, Diego, 2022. "Long-term efficiency of public service provision in a context of budget restrictions. An application to the education sector," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    12. Mahmood Mehdiloozad & Biresh K. Sahoo, 2016. "Identifying the Global Reference Set in DEA: An Application to the Determination of Returns to Scale," International Series in Operations Research & Management Science, in: Shiuh-Nan Hwang & Hsuan-Shih Lee & Joe Zhu (ed.), Handbook of Operations Analytics Using Data Envelopment Analysis, chapter 0, pages 299-330, Springer.
    13. tone, Kaoru, 2010. "Variations on the theme of slacks-based measure of efficiency in DEA," European Journal of Operational Research, Elsevier, vol. 200(3), pages 901-907, February.
    14. Victor V. Podinovski & Robert G. Chambers & Kazim Baris Atici & Iryna D. Deineko, 2016. "Marginal Values and Returns to Scale for Nonparametric Production Frontiers," Operations Research, INFORMS, vol. 64(1), pages 236-250, February.
    15. Laurens Cherchye & Timo Kuosmanen & Thierry Post, 2001. "FDH Directional Distance Functions with an Application to European Commercial Banks," Journal of Productivity Analysis, Springer, vol. 15(3), pages 201-215, January.
    16. Olesen, Ole Bent & Petersen, Niels Christian & Podinovski, Victor V., 2015. "Efficiency analysis with ratio measures," European Journal of Operational Research, Elsevier, vol. 245(2), pages 446-462.
    17. Papaioannou, Grammatoula & Podinovski, Victor V., 2023. "Production technologies with ratio inputs and outputs," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1164-1178.
    18. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    19. Peter Bogetoft & Joseph M. Tama & Jørgen Tind, 2000. "Convex Input and Output Projections of Nonconvex Production Possibility Sets," Management Science, INFORMS, vol. 46(6), pages 858-869, June.
    20. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    21. Mahmood Mehdiloozad, 2017. "Identifying the global reference set in DEA: a mixed 0–1 LP formulation with an equivalent LP relaxation," Operational Research, Springer, vol. 17(1), pages 205-211, April.
    22. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    23. Fare, Rolf & Grosskopf, Shawna & Logan, James, 1983. "The relative efficiency of Illinois electric utilities," Resources and Energy, Elsevier, vol. 5(4), pages 349-367, December.
    24. Ruggiero, John, 1996. "On the measurement of technical efficiency in the public sector," European Journal of Operational Research, Elsevier, vol. 90(3), pages 553-565, May.
    25. Rajiv D. Banker & Richard C. Morey, 1986. "The Use of Categorical Variables in Data Envelopment Analysis," Management Science, INFORMS, vol. 32(12), pages 1613-1627, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papaioannou, Grammatoula & Podinovski, Victor V., 2023. "Production technologies with ratio inputs and outputs," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1164-1178.
    2. Ole Bent Olesen & Niels Christian Petersen & Victor V. Podinovski, 2022. "Scale characteristics of variable returns-to-scale production technologies with ratio inputs and outputs," Annals of Operations Research, Springer, vol. 318(1), pages 383-423, November.
    3. Ole Bent Olesen & Niels Christian Petersen & Victor V. Podinovski, 2022. "The structure of production technologies with ratio inputs and outputs," Journal of Productivity Analysis, Springer, vol. 57(3), pages 255-267, June.
    4. Mehdiloozad, Mahmood & Podinovski, Victor V., 2018. "Nonparametric production technologies with weakly disposable inputs," European Journal of Operational Research, Elsevier, vol. 266(1), pages 247-258.
    5. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    6. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    8. Podinovski, Victor V. & Wu, Junlin & Argyris, Nikolaos, 2024. "Production trade-offs in models of data envelopment analysis with ratio inputs and outputs: An application to schools in England," European Journal of Operational Research, Elsevier, vol. 313(1), pages 359-372.
    9. Kuosmanen, Timo, 2001. "DEA with efficiency classification preserving conditional convexity," European Journal of Operational Research, Elsevier, vol. 132(2), pages 326-342, July.
    10. Mehdiloo, Mahmood & Podinovski, Victor V., 2021. "Strong, weak and Farrell efficient frontiers of technologies satisfying different production assumptions," European Journal of Operational Research, Elsevier, vol. 294(1), pages 295-311.
    11. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    12. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    13. Syrjanen, Mikko J., 2004. "Non-discretionary and discretionary factors and scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 158(1), pages 20-33, October.
    14. Olesen, Ole B. & Ruggiero, John, 2014. "Maintaining the Regular Ultra Passum Law in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 235(3), pages 798-809.
    15. Victoria Wojcik & Harald Dyckhoff & Marcel Clermont, 2019. "Is data envelopment analysis a suitable tool for performance measurement and benchmarking in non-production contexts?," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 559-595, December.
    16. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    17. Olesen, Ole Bent & Petersen, Niels Christian & Podinovski, Victor V., 2017. "Efficiency measures and computational approaches for data envelopment analysis models with ratio inputs and outputs," European Journal of Operational Research, Elsevier, vol. 261(2), pages 640-655.
    18. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    19. Victor V. Podinovski & Ole Bent Olesen & Cláudia S. Sarrico, 2018. "Nonparametric Production Technologies with Multiple Component Processes," Operations Research, INFORMS, vol. 66(1), pages 282-300, January.
    20. Olesen, Ole Bent & Petersen, Niels Christian & Podinovski, Victor V., 2015. "Efficiency analysis with ratio measures," European Journal of Operational Research, Elsevier, vol. 245(2), pages 446-462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:129:y:2024:i:c:s0305048324001208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.